Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Vet J ; 11(3): 447-457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722210

RESUMO

Background: During development, oligodendrocyte (OL) lineage cells are susceptible to injury, leading to life-long clinical neurodevelopmental deficits, which lack effective treatments. Drugs targeting epigenetic modifications that inhibit histone deacetylases (HDACs) protect from many clinical neurodegenerative disorders. Aim: This study aimed to investigate the therapeutic potential of histone deacetylase 2/3 (HDAC2/3) inhibitor MI192 on white matter (WM) pathology in a model of neonatal rat brain injury. Methods: Wistar rats (8.5-day-old, n = 32) were used to generate brain tissues. The tissues were cultured and then randomly divided into four groups and treated as following: group I (sham); the tissues were cultured under normoxia, group II (vehicle); DMSO only, group III (injury, INJ); the tissues were exposed to 20 minutes oxygen-glucose deprivation (OGD) insult, and group IV (INJ + MI192); the tissues were subjected to the OGD insult and then treated with the MI192 inhibitor. On culture day 10, the tissues were fixed for biochemical and histological examinations. Results: The results showed that inhibition of HDAC2/3 activity alleviated WM pathology. Specifically, MI192 treatment significantly reduced cell death, minimized apoptosis, and mitigates the loss of the MBP+ OLs and their precursors (NG2+ OPCs). Additionally, MI192 decreased the density of reactive microglia (OX-42+). These findings demonstrate that the inhibition of HDAC2/3 activity post-insult alleviates WM pathology through mechanism(s) including preserving OL lineage cells and suppressing microglial activation. Conclusion: The findings of this study suggest that HDAC2/3 inhibition is a rational strategy to preserve WM or reverse its pathology upon newborn brain injury.


Assuntos
Inibidores de Histona Desacetilases , Microglia , Animais , Benzamidas , Epigênese Genética , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Isoquinolinas , Oligodendroglia , Ratos , Ratos Wistar
2.
Open Vet J ; 11(2): 295-300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307087

RESUMO

Background: Patellar luxation (PL) is a common orthopedic affection among farm and pet animals with mostly congenital (environmental and/or genetic) background. Aim: We report here the first observation of lateral PL in Hejazi goats bred in Libya. Methods: Five Hejazi goats aged between 4 months and 2 years with severe hind limb lameness were admitted to Al-Sorouh veterinary clinic in Tripoli during the period from 2016 to 2018. The goats were thoroughly examined clinically and radiographically. Two goats were surgically treated, and the other three cases were not because of either the cost limitation or expected poor prognosis. The surgical intervention involved femoral trochlear sulcoplasty, medial joint capsule imbrication, and tibial tuberosity transposition. Results: The clinical examination showed grade III-IV lateral PL. Radiologically, there were unilateral or bilateral, ventrocaudal, and dorsal PLs. Two cases were referred to surgical correction. One case almost restored the normal movement of stifle joint together with a good general status 1 year postsurgery. However, the surgical treatment was not effective in correcting the luxated patella in the second case. Conclusion: Lateral PL is common among orthopedic affections in Hejazi goats in Libya, and its surgical treatment provided a quite convenient approach. An association between inbreeding and the PL was suggested in those cases.


Assuntos
Cabras , Luxação Patelar , Animais , Patela/diagnóstico por imagem , Patela/cirurgia , Luxação Patelar/diagnóstico por imagem , Luxação Patelar/cirurgia , Luxação Patelar/veterinária , Joelho de Quadrúpedes , Tíbia
3.
Eur J Hum Genet ; 20(2): 240-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21863054

RESUMO

The imprinted expression of the IGF2 and H19 genes is controlled by the imprinting control region 1 (ICR1) located at chromosome 11p15.5. DNA methylation defects involving ICR1 result in two growth disorders with opposite phenotypes: an overgrowth disorder, the Beckwith-Wiedemann syndrome (maternal ICR1 hypermethylation in 10% of BWS cases) and a growth retardation disorder, the Silver-Russell syndrome (paternal ICR1 loss of methylation in 60% of SRS cases). In familial BWS, hypermethylation of ICR1 has been found in association with microdeletion of repetitive DNA motifs within ICR1 that bind the zinc finger protein CTCF; but more recently, ICR1 point mutations were described in BWS pedigrees. We present a case report of two brothers with BWS and prolonged post-pubertal growth resulting in very large stature. A maternally inherited point mutation was identified in ICR1 in both brothers, which altered binding of OCT transcription factors. The same mutation was present on the paternally inherited allele of their unaffected mother. This is a second report of a point mutation causing ICR1 hypermethylation by altering an OCT-binding motif. The atypical growth phenotype of the brothers may be connected to the unusual underlying cause of their BWS.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Mutação , Fatores de Transcrição de Octâmero/metabolismo , RNA não Traduzido/genética , Alelos , Sequência de Bases , Síndrome de Beckwith-Wiedemann/diagnóstico , Sítios de Ligação/genética , Pré-Escolar , Metilação de DNA , Ordem dos Genes , Genótipo , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Regiões Promotoras Genéticas , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...