Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271662

RESUMO

The ongoing evolution of SARS-Co-V2 variants to omicron severely limits available effective monoclonal antibody therapies. Effective drugs are also supply limited. Covid-19 convalescent plasma (CCP) qualified for high antibody levels effectively reduces immunocompetent outpatient hospitalization. The FDA currently allows outpatient CCP for the immunosuppressed. Viral specific antibody levels in CCP can range ten-to hundred-fold between donors unlike the uniform viral specific monoclonal antibody dosing. Limited data are available on the efficacy of polyclonal CCP to neutralize variants. We examined 108 pre-delta/pre-omicron donor units obtained before March 2021, 20 post-delta COVID-19/post-vaccination units and one pre-delta/pre-omicron hyperimmunoglobulin preparation for variant specific virus (vaccine-related isolate (WA-1), delta and omicron) neutralization correlated to Euroimmun S1 IgG antibody levels. We observed a 2-to 4-fold and 20-to 40-fold drop in virus neutralization from SARS-CoV-2 WA-1 to delta or omicron, respectively. CCP antibody levels in the upper 10% of the 108 donations as well as 100% of the post-delta COVID-19/post-vaccination units and the hyperimmunoglobulin effectively neutralized all three variants. High-titer CCP neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants. Key pointsAll of the post-delta COVID-19/post vaccination convalescent plasma effectively neutralizes the omicron and delta variants. High-titer CCP and hyperimmunoglobulin neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267485

RESUMO

BACKGROUNDThe efficacy of polyclonal high titer convalescent plasma to prevent serious complications of COVID-19 in outpatients with recent onset of illness is uncertain. METHODSThis multicenter, double-blind randomized controlled trial compared the efficacy and safety of SARS-CoV-2 high titer convalescent plasma to placebo control plasma in symptomatic adults [≥]18 years positive for SARS-CoV-2 regardless of risk factors for disease progression or vaccine status. Participants with symptom onset within 8 days were enrolled, then transfused within the subsequent day. The measured primary outcome was COVID-19-related hospitalization within 28 days of plasma transfusion. The enrollment period was June 3, 2020 to October 1, 2021. RESULTSA total of 1225 participants were randomized and 1181 transfused. In the pre-specified modified intention-to-treat analysis that excluded those not transfused, the primary endpoint occurred in 37 of 589 (6.3%) who received placebo control plasma and in 17 of 592 (2.9%) participants who received convalescent plasma (relative risk, 0.46; one-sided 95% upper bound confidence interval 0.733; P=0.004) corresponding to a 54% risk reduction. Examination with a model adjusting for covariates related to the outcome did not change the conclusions. CONCLUSIONEarly administration of high titer SARS-CoV-2 convalescent plasma reduced outpatient hospitalizations by more than 50%. High titer convalescent plasma is an effective early outpatient COVID-19 treatment with the advantages of low cost, wide availability, and rapid resilience to variant emergence from viral genetic drift in the face of a changing pandemic. Trial RegistrationClinicalTrials.gov number, NCT04373460.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267611

RESUMO

BACKGROUNDThe efficacy of SARS-CoV-2 convalescent plasma (CCP) for preventing infection in exposed, uninfected individuals is unknown. We hypothesized that CCP might prevent infection when administered before symptoms or laboratory evidence of infection. METHODSThis double-blinded, phase 2 randomized, controlled trial (RCT) compared the efficacy and safety of prophylactic high titer ([≥]1:320) CCP with standard plasma. Asymptomatic participants aged [≥]18 years with close contact exposure to a person with confirmed COVID-19 in the previous 120 hours and negative SARS-CoV-2 test within 24 hours before transfusion were eligible. The primary outcome was development of SARS-CoV-2 infection. RESULTS180 participants were enrolled; 87 were assigned to CCP and 93 to control plasma, and 170 transfused at 19 sites across the United States from June 2020 to March 2021. Two were excluded for SARS-CoV-2 RT-PCR positivity at screening. Of the remaining 168 participants, 12/81 (14.8%) CCP and 13/87 (14.9%) control recipients developed SARS-CoV-2 infection; 6 (7.4%) CCP and 7 (8%) control recipients developed COVID-19 (infection with symptoms). There were no COVID-19-related hospitalizations in CCP and 2 in control recipients. There were 28 adverse events in CCP and 58 in control recipients. Efficacy by restricted mean infection free time (RMIFT) by 28 days for all SARS-CoV-2 infections (25.3 vs. 25.2 days; p=0.49) and COVID-19 (26.3 vs. 25.9 days; p=0.35) were similar for both groups. CONCLUSIONIn this trial, which enrolled persons with recent exposure to a person with confirmed COVID-19, high titer CCP as post-exposure prophylaxis appeared safe, but did not prevent SARS-CoV-2 infection. Trial RegistrationClinicaltrial.gov number NCT04323800.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261710

RESUMO

While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250717

RESUMO

Oral fluid (hereafter saliva) offers a non-invasive sampling method for the detection of SARS-CoV-2 antibodies. However, data comparing performance of salivary tests against commercially-available serologic and neutralizing antibody (nAb) assays are lacking. This study compared the performance of a multiplex salivary SARS-CoV-2 IgG assay targeting antibodies to nucleocapsid (N), receptor binding domain (RBD) and spike (S) antigens to three commercially-available SARS-CoV-2 serology enzyme immunoassays (EIAs) (Ortho Vitros, Euroimmun, and BioRad) and nAb. Paired saliva and plasma samples were collected from 101 eligible COVID-19 convalescent plasma (CCP) donors >14 days since PCR+ confirmed diagnosis. Concordance was evaluated using positive (PPA) and negative (NPA) percent agreement, overall percent agreement (PA), and Cohens kappa coefficient. The range between salivary and plasma EIAs for SARS-CoV-2-specific N was PPA: 54.4-92.1% and NPA: 69.2-91.7%, for RBD was PPA: 89.9-100% and NPA: 50.0-84.6%, and for S was PPA: 50.6-96.6% and NPA: 50.0-100%. Compared to a plasma nAb assay, the multiplex salivary assay PPA ranged from 62.3% (N) and 98.6% (RBD) and NPA ranged from 18.8% (RBD) to 96.9% (S). Combinations of N, RBD, and S and a summary algorithmic index of all three (N/RBD/S) in saliva produced ranges of PPA: 87.6-98.9% and NPA: 50-91.7% with the three EIAs and ranges of PPA: 88.4-98.6% and NPA: 21.9-34.4% with the nAb assay. A multiplex salivary SARS-CoV-2 IgG assay demonstrated comparable performance to three commercially-available plasma EIAs and a nAb assay, and may be a viable alternative to assist in screening CCP donors and monitoring population-based seroprevalence and vaccine antibody response.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248294

RESUMO

COVID-19 convalescent plasma, particularly plasma with high-titer SARS-CoV-2 (CoV2) antibodies, has been successfully used for treatment of COVID-19. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the four endemic human coronavirus (HCoV) genomes in 126 COVID-19 convalescent plasma donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies to SARS-CoV-2. We also found that plasma preferentially reactive to the CoV2 receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a two-peptide serosignature that identifies plasma donations with high anti-S titer but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting therapeutic plasma with desired functionalities.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-330688

RESUMO

Characterization of the T cell response in individuals who recover from SARS-CoV-2 infection is critical to understanding its contribution to protective immunity. A multiplexed peptide-MHC tetramer approach was used to screen 408 SARS-CoV-2 candidate epitopes for CD8+ T cell recognition in a cross-sectional sample of 30 COVID-19 convalescent individuals. T cells were evaluated using a 28-marker phenotypic panel, and findings were modelled against time from diagnosis, humoral and inflammatory responses. 132 distinct SARS-CoV-2-specific CD8+ T cell epitope responses across six different HLAs were detected, corresponding to 52 unique reactivities. T cell responses were directed against several structural and non-structural virus proteins. Modelling demonstrated a coordinated and dynamic immune response characterized by a decrease in inflammation, increase in neutralizing antibody titer, and differentiation of a specific CD8+ T cell response. Overall, T cells exhibited distinct differentiation into stem-cell and transitional memory states, subsets, which may be key to developing durable protection.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20196154

RESUMO

Convalescent plasma has emerged as a promising COVID-19 treatment. However, the humoral factors that contribute to efficacy are poorly understood. This study functionally and phenotypically profiled plasma from eligible convalescent donors. In addition to viral neutralization, convalescent plasma contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis and antibody-dependent cellular cytotoxicity against SARS-CoV-2. These activities expand the antiviral functions associated with convalescent plasma and together with neutralization efficacy, could be accurately and robustly from antibody phenotypes. These results suggest that high-throughput profiling could be used to screen donors and plasma may provide benefits beyond neutralization.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20184788

RESUMO

Accurate serological assays to detect antibodies to SARS-CoV-2 are needed to characterize the epidemiology of SARS-CoV-2 infection and identify potential candidates for COVID-19 convalescent plasma (CCP) donation. This study compared the performance of commercial enzyme immunoassays (EIAs) to detect IgG or total antibodies to SARS-CoV-2 and neutralizing antibodies (nAb). The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) to detect IgG or total antibodies to SARS-CoV-2 was evaluated from cross-sectional samples of potential CCP donors that had prior molecular confirmation of SARS-CoV-2 infection for sensitivity (n=214) and pre-pandemic emergency department patients for specificity (n=1,102). Of the 214 potential CCP donors, all were sampled >14 days since symptom onset and only a minority had been hospitalized due to COVID-19 (n=16 [7.5%]); 140 potential CCP donors were tested by all five EIAs and a microneutralization assay. When performed according to the manufacturers protocol to detect IgG or total antibodies to SARS-CoV-2, the sensitivity of each EIA ranged from 76.4% to 93.9%, and the specificity of each EIA ranged from 87.0% to 99.6%. Using a nAb titer cutoff of [≥]160 as the reference positive test (n=140 CCP donors), the empirical area under receiver operating curve of each EIA ranged from 0.66 (Roche) to 0.90 (Euroimmun). Commercial EIAs with high diagnostic accuracy to detect SARS-CoV-2 antibodies did not necessarily have high diagnostic accuracy to detect high nAbs. Some but not all commercial EIAs may be useful in the identification of individuals with high nAbs in convalescent individuals.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20162917

RESUMO

To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from randomized clinical trials, matched control, case series, and case report studies. Fixed-effects analyses demonstrated that hospitalized COVID-19 patients transfused with convalescent plasma exhibited a ~57% reduction in mortality rate (10%) compared to matched-patients receiving standard treatments (22%; OR: 0.43, P < 0.001). These data provide evidence favouring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized COVID-19 patients.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20139063

RESUMO

Convalescent plasma is currently one of the leading treatments for COVID-19, but there is a paucity of data identifying therapeutic efficacy. A comprehensive analysis of the antibody responses in potential plasma donors and an understanding of the clinical and demographic factors that drive variant antibody responses is needed. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated by a SARS-CoV-2 virus neutralization assay using Vero-E6-TMPRSS2 cells, commercial IgG and IgA ELISA to Spike (S) protein S1 domain (Euroimmun), IgA, IgG and IgM indirect ELISAs to the full-length S or S-receptor binding domain (S-RBD), and an IgG avidity assay. Multiple linear regression and predictive models were utilized to assess the correlations between antibody responses with demographic and clinical characteristics. IgG titers were greater than either IgM or IgA for S1, full length S, and S-RBD in the overall population. Of the 126 plasma samples, 101 (80%) had detectable neutralizing titers. Using neutralization titer as the reference, the sensitivity of the IgG ELISAs ranged between 95-98%, but specificity was only 20-32%. Male sex, older age, and hospitalization with COVID-19 were all consistently associated with increased antibody responses across the serological assays. Neutralizing antibody titers were reduced over time in contrast to overall antibody responses. There was substantial heterogeneity in the antibody response among potential convalescent plasma donors, but sex, age and hospitalization emerged as factors that can be used to identify individuals with a high likelihood of having strong antiviral antibody levels. One Sentence SummaryThere is substantial heterogeneity in the antibody response to SARS-CoV-2 infection, with greater antibody responses being associated with male sex, advancing age, and hospitalization with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...