Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 136: 212756, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929302

RESUMO

Carbon quantum dots (CQDs) have gained significant growing attention in the recent past due to their peculiar characteristics including smaller size, high surface area, photoluminescence, chemical stability, facile synthesis and functionalization possibilities. They are carbon nanostructures having less than 10 nm size with fluorescent properties. In recent years, the scientific community is curiously adopting biomass precursors for the preparation of CQDs over the chemical compounds. These biomass sources are sustainable, eco-friendly, inexpensive, widely available and convert waste into valuable materials. Hence in our work the fundamental understating of diverse fabrication methodologies of CQDs, and the types of raw materials employed in recent times, are all examined and correlated comprehensively. Their unique combination of remarkable properties, together with the ease with which they can be fabricated, makes CQDs as promising materials for applications in diverse biomedical fields, in particular for bio-imaging, targeted drug delivery and phototherapy for cancer treatment. The mechanism for luminescence is of considerable significance for leading the synthesis of CQDs with tunable fluorescence emission. Therefore, it is aimed to explore and provide an updated review on (i) the recent progress on the different synthesis methods of biomass-derived CQDs, (ii) the contribution of surface states or functional groups on the luminescence origin and (iii) its potential application for cancer theranostics, concentrating on their fluorescence properties. Finally, we explored the challenges in modification for the synthesis of CQDs from biomass derivatives and the future scope of CQDs in phototherapy for cancer theranostics.


Assuntos
Neoplasias , Pontos Quânticos , Carbono/química , Fluorescência , Humanos , Luminescência , Neoplasias/diagnóstico , Medicina de Precisão , Pontos Quânticos/química
2.
Environ Res ; 199: 111263, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33939978

RESUMO

Biomass-derived carbon quantum dots have drawn special interest owing to their admirable photostability, biocompatibility, fluorescence, high solubility, sensitivity and environmentally friendly properties. In the present work, the Carbon Quantum Dots (CQDs) was synthesized from the Plectranthus amboinicus (Mexican Mint) leaves via the microwave-assisted reflux method. The strong absorption peaks observed from UV-vis spectra at 291 and 330 nm corresponds to the π-π* and n-π* transitions, respectively, reveal the formation of CQDs. The synthesized CQDs showed bright blue fluorescence under UV irradiation with a fluorescence quantum yield of 17% and a maximum emission of 436 nm in the blue region at an excitation wavelength of 340 nm. The HRTEM analysis elucidates that the synthesized CQDs were crystalline and spherical in shape with a particle size of 2.43 ± 0.02 nm. The FT-IR spectroscopy confirms the presence of the different functional groups such as -OH, -CH, CO and C-O. The chemical composition of CQD was revealed through XPS analysis. The synthesized CQDs were used as a fluorescent probe to detect different metal ions, where high selectivity was obtained for Fe3+ ions through quenching phenomenon. The emission intensity of CQD showed a good linear relationship with R2 = 0.9111 with the concentration of Fe3+ ions in the range of 0-15 µM. The fluorescence emission of CQD was turned OFF upon the binding of Fe3+ ions and turned - ON with the addition of ascorbic acid. With this fluorescent turn ON-OFF behaviour of CQD, the NOT and IMPLICATION logic gates were constructed and studied for different input conditions. The biocompatibility of CQD was tested via MTT assay using MCF7 breast cancer cell line, which revealed that CQD synthesized from the Mexican Mint leaves possess less cytotoxicity. Further, the prepared CQD was applied effectively as fluorescent probes in a cell imaging application.


Assuntos
Mentha , Pontos Quânticos , Carbono , Micro-Ondas , Extratos Vegetais , Pontos Quânticos/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Res ; 200: 111414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052245

RESUMO

Herein, we demonstrated a sustainable green approach for the preparation of fluorescent biocompatible carbon quantum dots by microwave-assisted reflux synthesis from Aloe barbadensis Miller (Aloe vera) extract. The Transmission Electron Microscopic images reveal that the as-prepared CQDs are spherical with less than 5 nm in size. The CQDs are amorphous, showed an excitation-independent behaviour, emitted blue fluorescence and have a fluorescence quantum yield of 31%. The presence of -OH groups contributed to the blue emission and helped CQDs to disperse uniformly in an aqueous solution. The prepared CQDs were employed as a photocatalyst for the environmental remediation to degrade the anionic dye, eosin yellow under visible light irradiation. The results showed that the CQDs exhibited excellent photocatalytic efficiency of 98.55% within 80 min and a 100% efficiency within 100 min. Further, the cytotoxic properties of as-prepared CQDs are investigated in the MCF-7 breast cancer cell line using MTT assay. The results demonstrated a notable reduction in cell viability in a dose-subjected manner, and the cell viability decreased to 50% (IC50) at a concentration of 52.2 ± 1.35 µg/mL. Furthermore, cellular internalization of CQDs in breast cancer cells is studied. As expected, CQDs are found to internalize by the cancer cells with blue emission as revealed by fluorescence microscope. In the end, CQDs in human breast cancer cells demonstrate the anti-proliferative effect and are found to be an impressive fluorescent probe for live-cell imaging, paving a path for its potential biomedical applications.


Assuntos
Aloe , Pontos Quânticos , Carbono , Corantes Fluorescentes , Humanos , Microscopia Eletrônica de Transmissão , Pontos Quânticos/toxicidade
4.
Fish Physiol Biochem ; 45(4): 1463-1484, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222661

RESUMO

This study is aimed to evaluate the toxic effects of triclosan (TCS) in an Indian major carp Labeo rohita. The 96-h LC50 value of triclosan to L. rohita was found to be 0.39 mg L-1. Fish were exposed to two sublethal concentrations (0.039 mg L-1, treatment I and 0.078 mg L-1, treatment II) of TCS for 35 days, and certain hematobiochemical, antioxidant, histopathological responses were measured. Compared to the control group, there was a significant (p < 0.05) decrease in the values and genotoxicity of hematological parameters such as hemoglobin (Hb), hematocrit (Hct), and erythrocyte (RBC) in TCS-exposed fish, but the values of leucocyte count (WBC), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were found to be increased. A biphasic response in mean corpuscular hemoglobin concentration (MCHC) value was observed during the study period (35 days). Significant (p < 0.05) alterations in plasma biochemical parameters (glucose and protein), electrolytes (Na+, K+, and Cl-), and transaminases (GOT and GPT) were observed in fish treated with TCS in both treatments. Gill Na+/K+-ATPase activity was found to be decreased in fish treated with TCS in both treatments. Enzymatic and nonenzymatic antioxidant index levels have also fluctuated in all the tissues (gill, liver, and kidney). The histological lesions were comparatively more severe in the gill than the liver and kidney. Comet assay showed DNA damage on exposure at two sublethal concentrations. The present results suggest that TCS is highly toxic to fish even at sublethal concentrations.


Assuntos
Anti-Infecciosos/toxicidade , Cyprinidae , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae/genética , Cyprinidae/metabolismo , Dano ao DNA , Proteínas de Peixes/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Testes Hematológicos , Rim/efeitos dos fármacos , Rim/metabolismo , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Chemosphere ; 213: 423-433, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243208

RESUMO

Ketoprofen a nonsteroidal anti-inflammatory drug (NSAID) is widely used in over-the-counter to treat pain, swelling and inflammation. Due to extensive application these drugs has been detected in surface waters which may create a risk to aquatic organisms. The aim of the present study is to assess the ecotoxicity of ketoprofen at different concentrations (1, 10 and 100 µg/ml) on embryos and adult zebrafish (1, 10 and 100 µg L-1) under laboratory conditions. In embryos, concentration dependent developmental changes such as edema, spinal curvature, slow heartbeat, delayed hatching, and mortality rate were observed. In adult zebrafish, biochemical enzymes such as AST, ALT and LDH activities were significantly (P < 0.05) increased whereas a decrease in Na+/K+-ATPase activity was noticed in all the tested concentrations of the drug ketoprofen. Similarly, exposure of ketoprofen caused a significant decrease in antioxidant levels in liver tissue (SOD, CAT, GSH, GPx, and GST). However, lipid peroxidation (LPO) level in liver tissue was found to be increased. The histopathological studies further evidenced the impact of ketoprofen in the liver tissue of zebrafish. The present result concludes that ketoprofen could have an impact on the development and biological endpoints of the zebra fish at above concentrations. The malformation in the development of the embryo and changes in the biological end points may provide integrated evaluation of the toxic effect of ketoprofen on zebrafish in a new perspective.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Cetoprofeno/efeitos adversos , Poluentes Químicos da Água/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cetoprofeno/farmacologia , Peixe-Zebra
6.
Environ Sci Pollut Res Int ; 25(12): 11812-11832, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29446018

RESUMO

The aim of the present investigation is to assess the sublethal toxicity of biologically synthesized silver nanoparticles (Ag NPs) in Indian major carp Labeo rohita. Ag NPs used in the study were synthesized by using AgNO3 with aqueous leaf extract of Piper nigrum. Median lethal concentration (LC50) of synthesized Ag NPs was determined for 96 h (25 µg/L); 2.5 µg/L (1/10th LC50) and 5 µg/L (1/5th LC50) were taken as sublethal concentrations to evaluate the toxicity for 35 days. The results of the TEM, SEM, and EDX analyses revealed that Ag NPs were considerably accumulated in the gill, liver, and kidney of fish at both concentrations (2.5 and 5 µg/L). Consequently, the activity of the antioxidant enzymes, SOD and CAT, was significantly (P < 0.05) decreased in the gill, liver, and kidney when compared to the control group during the study period. However, lipid peroxidase (LPO) activity in the gill, liver, and kidney was significantly (P < 0.05) increased, and the result concluded a possible sign of free radical-induced oxidative stress in Ag NP-exposed fish than the sham-exposed individuals. The histopathological study also confirmed the alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic necrosis, pyknotic nuclei, increased intracellular space, and shrinkage of glomerulus elicited by Ag NPs in the gill, liver, and kidney of Labeo rohita with two different concentrations. The findings of the present study revealed that green synthesis of Ag NPs from Piper nigrum at sublethal concentrations leads to accumulation of Ag, oxidative stress, and histopathological alterations in the target organs of the fish, Labeo rohita.


Assuntos
Carpas/metabolismo , Nanopartículas Metálicas/toxicidade , Piper nigrum/metabolismo , Prata/toxicidade , Animais , Antioxidantes/metabolismo , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Oxirredução , Estresse Oxidativo , Prata/metabolismo
7.
Toxicol Rep ; 5: 18-27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29270363

RESUMO

In this study the toxicity of antimalarial drug chloroquine (CQ) on certain enzymological (GOT, GPT and LDH) and histopathological alterations (Gill, liver and kidney) of a freshwater fish Cyprinus carpio was studied after acute (96 h) and sublethal (35 days) exposure. The median lethal concentration (96 h) of CQ was 31.62 mg/ml. During acute treatment (CQ at 31.62 mg/ml) the treated fish groups showed a significant increase in GOT and GPT activities in blood plasma; whereas LDH activity was decreased when compare to control groups. To analyse the effects of drug at the lowest concentration, the fish were exposed to 3.16 mg/ml (1/10th of 96 h LC50 value) for 96 h. In sublethal treatment (3.16 mg/ml) GOT activity increased up to 14th day and decreased during the rest of the exposure period (21, 28 and 35th day). A biphasic response in GPT activity was observed. LDH activity was found to be increased throughout the study period (35 days) compare to control groups. The alterations in enzyme activities in blood plasma were found to be significant at p < 0.05 (DMRT). Many histopathological changes in vital organs such as gill, liver and kidney of fish were observed in CQ treated group (acute and sub-lethal) compare to normal group. The alterations in the enzymological and histopathological study in the present investigation indicate that the drug CQ has toxic effects on non-target organisms. We conclude that the alterations in enzymological parameters and histopathological changes can be used as biomarker to assess the health of the aquatic organism/environment. Further data on molecular studies are needed to define the mode of action and toxicity of these emerging pollutants.

8.
J Parasit Dis ; 39(4): 789-92, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26688655

RESUMO

Several Nerocila species appear to have little or no host specificity. However, in India, Nerocila sundaica was found to be attached to the pectoral fin or on the body of the fish Otolithes ruber. During October 2013, the parasitic prevalence reached 42.2 % and the Mean intensity was equal to 1. The infected host fish's size ranged from 12.5 to 17.2 cm. Moreover, slight tissue damages were also observed in the host fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA