Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 90(12): 2793-2805, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455596

RESUMO

During their seasonal migration, birds stage in areas comprising stopover sites of varying quality. Given that migrating birds have a limited information about their environment, they may land at a low-quality stopover site in which their fuel deposition rate (FDR) is low. Birds landing at such sites should decide either to extend their stopover duration or to quickly depart in search for a better site. These decisions, however, strongly depend on their body condition upon landing. To understand the decision-making process of passerines within a stopover area, comprising stopover sites of varying quality, prior to the crossing of a large ecological barrier, we constructed a state-dependent habitat selection model. The model assumes that even if migrating birds have an expectation of encountered area quality, they cannot control for their initial landing site. Once landing, movement between low- and high-quality stopover sites will occur only if the body condition of these birds is high to the extent that they can entail the energetic cost of movement. Birds in the model aim to maximize their fuel load at the end of the stopover period, to suffice for successfully crossing a large ecological barrier. The model is based on empirical data on autumn migrating Blackcaps Sylvia atricapilla, collected at two important stopover sites in the Negev desert of Israel. Migrating passerines staging at these two sites differ in their FDR and body condition. The model shows that the optimal behaviour when arriving at a low-quality stopover site is to abandon it quickly. However, as lean individuals cannot entail the costs of searching for an alternative site, they have no other choice but to stay there even if their chances to successfully cross the Sahara Desert ahead are low. Our model can be applied to other ecological systems. Proper use of this model may allow good assessment of stopover site quality, as indicated by the bird's FDR, regardless of specific site characteristics. Hence, it can help applying targeted management decisions regarding the maintenance of stopover sites or establishment of new ones.


Assuntos
Migração Animal , Passeriformes , Animais , Ecossistema , Israel , Estações do Ano
2.
PLoS One ; 7(8): e43497, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927974

RESUMO

Urban bird communities have higher densities but lower diversity compared with wildlands. However, recent studies show that residential urban yards with native plantings have higher native bird diversity compared with yards with exotic vegetation. Here we tested whether landscape designs also affect bird foraging behavior. We estimated foraging decisions by measuring the giving-up densities (GUD; amount of food resources remaining when the final forager quits foraging on an artificial food patch, i.e seed trays) in residential yards in Phoenix, AZ, USA. We assessed how two yard designs (mesic: lush, exotic vegetation; xeric: drought-tolerant and native vegetation) differed in foraging costs. Further, we developed a statistical model to calculate GUDs for every species visiting the seed tray. Birds foraging in mesic yards depleted seed trays to a lower level (i.e. had lower GUDs) compared to birds foraging in xeric yards. After accounting for bird densities, the lower GUDs in mesic yards appeared largely driven by invasive and synanthropic species. Furthermore, behavioral responses of individual species were affected by yard design. Species visiting trays in both yard designs had lower GUDs in mesic yards. Differences in resource abundance (i.e., alternative resources more abundant and of higher quality in xeric yards) contributed to our results, while predation costs associated with foraging did not. By enhancing the GUD, a common method for assessing the costs associated with foraging, our statistical model provided insights into how individual species and bird densities influenced the GUD. These differences we found in foraging behavior were indicative of differences in habitat quality, and thus our study lends additional support for native landscapes to help reverse the loss of urban bird diversity.


Assuntos
Comportamento Animal , Aves , Habitação , Ração Animal , Animais , Aves/classificação , Cidades , Fatores de Tempo
3.
Ecology ; 91(5): 1329-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503866

RESUMO

Some microbial symbionts of plants are maternally inherited and thus functionally increase genetic and phenotypic variation within plant populations. This variation, coupled with that of the host plant and environment, may alter abundances, diversity, and trophic structure of associated plant and animal communities. Fungal endophytes in the genus Neotyphodium are vertically transmitted, asexual microbial symbionts of grasses that remain asymptomatic and rely upon their hosts for resources and transmission via seeds, often providing benefits to their hosts, including protection against herbivores. Endophyte infections may influence associated arthropod communities in agronomic grasses, but the long-term effects of endophytes and variation in host genotype and resource availability on arthropod communities in native grass populations are unknown. We conducted a long-term field experiment with four maternal genotypes of an infected (E+) native grass (Festuca arizonica) from whence the endophyte was experimentally removed (E-) and water availability was controlled, to test the effects of infection, plant genotype, and resources on abundances, biomass, diversity (richness and evenness), and trophic structure of the arthropod community. Generally, E+ grasses harbored more arthropods, including more herbivores, predators, and detritivores, suggesting that the effects of endophytes cascaded upward through trophic levels in terms of abundances, at least in early ontogeny of the host. That E+ plants harbored more herbivorous insects than E- plants suggests that infection does not increase but instead decreases resistance to herbivores, contrary to prevailing concepts of endophytes as defensive mutualists. Infection did not alter overall species richness of the arthropod community or richness of herbivores but reduced natural enemy richness, especially that of parasites, and increased richness of detritivores. Reduced richness and shifts in evenness of natural enemies on E+ plants suggest that endophytes may disproportionately affect diversity at higher trophic levels and may partially explain increases in abundances of herbivorous insects on E+ plants. Biomass of predators, detritivores, and omnivores increased on plants with supplemented water, and arthropod and herbivore biomass varied by plant genotype. Symbiont-mediated phenotypic variation interacts with variation from plant genotype and environmental factors to alter arthropod abundances and diversity, and these effects shift with ontogeny of the host.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Festuca/microbiologia , Neotyphodium/fisiologia , Animais , Comportamento Alimentar , Dinâmica Populacional , Estações do Ano , Fatores de Tempo , Água
4.
J Theor Biol ; 247(1): 36-49, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17382966

RESUMO

This article explores factors that shape population structure in novel environments that have received scant theoretical attention: cities. Urban bird populations exhibit higher densities and lower diversity. Some work suggests this may result from lower predation pressure and more predictable and abundant resources. These factors may lead to populations with few winners and many losers regarding access to food, body condition, and reproductive success. We explore these hypotheses with an individual-energy-based competition model with two phenotypes of differing foraging ability. We show that low frequency resource fluctuations favor strong competitors and vice versa. We show that low predation skews equilibrium populations in favor of weak competitors and vice versa. Increasing the time between resource pulses can thus shift population structure from weak to strong competitor dominance. Given recent evidence for more constant resource input and lower predation in urban areas, the model helps understand observed urban bird population structure.


Assuntos
Aves/crescimento & desenvolvimento , Cidades , Modelos Biológicos , Comportamento Predatório , Animais , Coeficiente de Natalidade , Ecossistema , Mortalidade , Dinâmica Populacional
5.
Trends Ecol Evol ; 21(4): 186-91, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16701084

RESUMO

Rapid urbanization has become an area of crucial concern in conservation owing to the radical changes in habitat structure and loss of species engendered by urban and suburban development. Here, we draw on recent mechanistic ecological studies to argue that, in addition to altered habitat structure, three major processes contribute to the patterns of reduced species diversity and elevated abundance of many species in urban environments. These activities, in turn, lead to changes in animal behavior, morphology and genetics, as well as in selection pressures on animals and plants. Thus, the key to understanding urban patterns is to balance studying processes at the individual level with an integrated examination of environmental forces at the ecosystem scale.


Assuntos
Ecologia , Urbanização
6.
Ecol Appl ; 16(2): 687-95, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711055

RESUMO

Bird populations in North America's grasslands have declined sharply in recent decades. These declines are traceable, in large part, to habitat loss, but management of tallgrass prairie also has an impact. An indirect source of decline potentially associated with management is brood parasitism by the Brown-headed Cowbird (Molothrus ater), which has had substantial negative impacts on many passerine hosts. Using a novel application of regression trees, we analyzed an extensive five-year set of nest data to test how management of tallgrass prairie affected rates of brood parasitism. We examined seven landscape features that may have been associated with parasitism: presence of edge, burning, or grazing, and distance of the nest from woody vegetation, water, roads, or fences. All five grassland passerines that we included in the analyses exhibited evidence of an edge effect: the Grasshopper Sparrow (Ammodramus savannarum), Henslow's Sparrow (A. henslowii), Dickcissel (Spiza americana), Red-winged Blackbird (Agelaius phoeniceus), and Eastern Meadowlark (Sturnella magna). The edge was represented by narrow strips of woody vegetation occurring along roadsides cut through tallgrass prairie. The sparrows avoided nesting along these woody edges, whereas the other three species experienced significantly higher (1.9-5.3x) rates of parasitism along edges than in prairie. The edge effect could be related directly to increase in parasitism rate with decreased distance from woody vegetation. After accounting for edge effect in these three species, we found evidence for significantly higher (2.5-10.5x) rates of parasitism in grazed plots, particularly those burned in spring to increase forage, than in undisturbed prairie. Regression tree analysis proved to be an important tool for hierarchically parsing various landscape features that affect parasitism rates. We conclude that, on the Great Plains, rates of brood parasitism are strongly associated with relatively recent road cuts, in that edge effects manifest themselves through the presence of trees, a novel habitat component in much of the tallgrass prairie. Grazing is also a key associate of increased parasitism. Areas managed with prescribed fire, used frequently to increase forage for grazing cattle, may experience higher rates of brood parasitism. Regardless, removing trees and shrubs along roadsides and refraining from planting them along new roads may benefit grassland birds.


Assuntos
Meio Ambiente , Comportamento de Nidação , Passeriformes/fisiologia , Passeriformes/parasitologia , Animais , Bovinos , Ingestão de Alimentos , Feminino , Incêndios , Agricultura Florestal , Masculino , Oklahoma , Plantas
7.
Naturwissenschaften ; 91(11): 544-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15455207

RESUMO

Frugivorous migrants may select fruit-rich habitats en route to attain high food rewards, yet their stopover behavior may also be shaped by other considerations, such as predation risk. During 1996-2001 we investigated autumn stopover habitat use of three Sylvia warblers (sylviids; S. hortensis, S. atricapilla and S. curruca) and three Turdidae chats (turdids; Cercotrichas galactotes, Oenanthe hispanica and Phoenicurus phoenicurus) in planted groves of the fruiting tree Pistacia atlantica in Lahav Forest, Israel, which is located at the edge of a desert. We used fecal analysis, a constant-effort trapping scheme and field observations to estimate the extent of frugivory, and bird habitat and microhabitat selection with regard to natural fruit and foliage densities. We also measured bird microhabitat selection in a set of fruit-manipulated trees. We trapped a total of 2,357 birds during the course of the study. Although sylviids exhibited higher frugivory level than turdids, both species groups exhibited a similar significantly positive correlation between bird and fruit densities at the habitat scale. However, at the microhabitat scale, sylviids selected densely foliated trees, whilst turdids were randomly distributed among trees. Our findings suggest that both species groups selected fruit-rich stopover habitats to take advantage of the high food availability before the demanding migration journey. No other mechanism except predation avoidance can explain the sylviids' microhabitat selection; the migrants used foliage cover to reduce bird detectability by raptors. We conclude that en route passerines may use staging habitats in a sophisticated manner, by adopting scale-related behavior with regard to the availability of food and refuge cover.


Assuntos
Migração Animal , Meio Ambiente , Passeriformes/fisiologia , Ração Animal , Animais , Israel , Passeriformes/classificação , Densidade Demográfica , Estações do Ano
8.
Am Nat ; 164(2): 232-43, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15278846

RESUMO

Urban bird communities exhibit high population densities and low species diversity, yet mechanisms behind these patterns remain largely untested. We present results from experimental studies of behavioral mechanisms underlying these patterns and provide a test of foraging theory applied to urban bird communities. We measured foraging decisions at artificial food patches to assess how urban habitats differ from wildlands in predation risk, missed-opportunity cost, competition, and metabolic cost. By manipulating seed trays, we compared leftover seed (giving-up density) in urban and desert habitats in Arizona. Deserts exhibited higher predation risk than urban habitats. Only desert birds quit patches earlier when increasing the missed-opportunity cost. House finches and house sparrows coexist by trading off travel cost against foraging efficiency. In exclusion experiments, urban doves were more efficient foragers than passerines. Providing water decreased digestive costs only in the desert. At the population level, reduced predation and higher resource abundance drive the increased densities in cities. At the community level, the decline in diversity may involve exclusion of native species by highly efficient urban specialists. Competitive interactions play significant roles in structuring urban bird communities. Our results indicate the importance and potential of mechanistic approaches for future urban bird community studies.


Assuntos
Comportamento Animal , Aves/fisiologia , Comportamento Alimentar , Animais , Arizona , Aves/metabolismo , Cidades , Comportamento Competitivo , Clima Desértico , Tentilhões/metabolismo , Tentilhões/fisiologia , Densidade Demográfica , Comportamento Predatório , Pardais/metabolismo , Pardais/fisiologia , Temperatura , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...