Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3547, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670976

RESUMO

Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.


Assuntos
Diacilglicerol O-Aciltransferase , Ácidos Graxos , Óleos de Plantas , Triglicerídeos , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese , Óleos de Plantas/metabolismo , Óleos de Plantas/química , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Lipase/metabolismo , Sementes/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Gotículas Lipídicas/metabolismo , Plantas Geneticamente Modificadas
2.
Plant Physiol Biochem ; 196: 940-951, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36889233

RESUMO

The chemical and physical properties of vegetable oils are largely dictated by the ratios of 4-6 common fatty acids contained within each oil. However, examples of plant species that accumulate from trace amounts to >90% of certain unusual fatty acids in seed triacylglycerols have been reported. Many of the general enzymatic reactions that drive both common and unusual fatty acid biosynthesis and accumulation in stored lipids are known, but which isozymes have evolved to specifically fill this role and how they coordinate in vivo is still poorly understood. Cotton (Gossypium sp.) is the very rare example of a commodity oilseed that produces biologically relevant amounts of unusual fatty acids in its seeds and other organs. In this case, unusual cyclopropyl fatty acids (named after the cyclopropane and cyclopropene moieties within the fatty acids) are found in membrane and storage glycerolipids (e.g. seed oils). Such fatty acids are useful in the synthesis of lubricants, coatings, and other types of valuable industrial feedstocks. To characterize the role of cotton acyltransferases in cyclopropyl fatty acid accumulation for bioengineering applications, we cloned and characterized type-1 and type-2 diacylglycerol acyltransferases from cotton and compared their biochemical properties to that of litchi (Litchi chinensis), another cyclopropyl fatty acid-producing plant. The results presented from transgenic microbes and plants indicate both cotton DGAT1 and DGAT2 isozymes efficiently utilize cyclopropyl fatty acid-containing substrates, which helps to alleviate biosynthetic bottlenecks and enhances total cyclopropyl fatty acid accumulation in the seed oil.


Assuntos
Diacilglicerol O-Aciltransferase , Diglicerídeos , Diacilglicerol O-Aciltransferase/genética , Gossypium/genética , Isoenzimas , Aciltransferases , Plantas , Sementes/genética , Ácidos Graxos/química , Triglicerídeos , Óleos de Plantas/química , Plantas Geneticamente Modificadas
3.
BMC Plant Biol ; 23(1): 147, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932365

RESUMO

BACKGROUND: Cotton (Gossypium sp.) has been cultivated for centuries for its spinnable fibers, but its seed oil also possesses untapped economic potential if, improvements could be made to its oleic acid content. RESULTS: Previous studies, including those from our laboratory, identified pima accessions containing approximately doubled levels of seed oil oleic acid, compared to standard upland cottonseed oil. Here, the molecular properties of a fatty acid desaturase encoded by a mutant allele identified by genome sequencing in an earlier analysis were analyzed. The mutant sequence is predicted to encode a C-terminally truncated protein lacking nine residues, including a predicted endoplasmic reticulum membrane retrieval motif. We determined that the mutation was caused by a relatively recent movement of a Ty1/copia type retrotransposon that is not found associated with this desaturase gene in other sequenced cotton genomes. The mutant desaturase, along with its repaired isozyme and the wild-type A-subgenome homoeologous protein were expressed in transgenic yeast and stably transformed Arabidopsis plants. All full-length enzymes efficiently converted oleic acid to linoleic acid. The mutant desaturase protein produced only trace amounts of linoleic acid, and only when strongly overexpressed in yeast cells, indicating that the missing C-terminal amino acid residues are not strictly required for enzyme activity, yet are necessary for proper subcellular targeting to the endoplasmic reticulum membrane. CONCLUSION: These results provide the biochemical underpinning that links a genetic lesion present in a limited group of South American pima cotton accessions and their rare seed oil oleic acid traits. Markers developed to the mutant desaturase allele are currently being used in breeding programs designed to introduce this trait into agronomic upland cotton varieties.


Assuntos
Gossypium , Ácido Oleico , Ácido Oleico/metabolismo , Gossypium/metabolismo , Ácido Linoleico/análise , Ácido Linoleico/metabolismo , Alelos , Saccharomyces cerevisiae/metabolismo , Iodeto de Potássio/metabolismo , Melhoramento Vegetal , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Sementes/metabolismo , Óleo de Sementes de Algodão/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R171-R182, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503254

RESUMO

A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.


Assuntos
Óleo de Sementes de Algodão , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Peso Corporal , Colesterol , Óleo de Sementes de Algodão/metabolismo , Óleo de Sementes de Algodão/farmacologia , Dieta Hiperlipídica , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Azeite de Oliva/farmacologia , Azeite de Oliva/metabolismo , Triglicerídeos
6.
Front Plant Sci ; 13: 1056582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714784

RESUMO

In higher plants, acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) catalyze the terminal step of triacylglycerol (TAG) synthesis in acyl-CoA-dependent and -independent pathways, respectively. Avocado (Persea americana) mesocarp, a nonseed tissue, accumulates significant amounts of TAG (~70% by dry weight) that is rich in heart-healthy oleic acid (18:1). The oil accumulation stages of avocado mesocarp development coincide with high expression levels for type-1 DGAT (DGAT1) and PDAT1, although type-2 DGAT (DGAT2) expression remains low. The strong preference for oleic acid demonstrated by the avocado mesocarp TAG biosynthetic machinery represents lucrative biotechnological opportunities, yet functional characterization of these three acyltransferases has not been explored to date. We expressed avocado PaDGAT1, PaDGAT2, and PaPDAT1 in bakers' yeast and leaves of Nicotiana benthamiana. PaDGAT1 complemented the TAG biosynthesis deficiency in the quadruple mutant yeast strain H1246, and substantially elevated total cellular lipid content. In vitro enzyme assays showed that PaDGAT1 prefers oleic acid compared to palmitic acid (16:0). Both PaDGAT1 and PaPDAT1 increased the lipid content and elevated oleic acid levels when expressed independently or together, transiently in N. benthamiana leaves. These results indicate that PaDGAT1 and PaPDAT1 prefer oleate-containing substrates, and their coordinated expression likely contributes to sustained TAG synthesis that is enriched in oleic acid. This study establishes a knowledge base for future metabolic engineering studies focused on exploitation of the biochemical properties of PaDGAT1 and PaPDAT1.

7.
Plant J ; 108(6): 1735-1753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643970

RESUMO

Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.


Assuntos
Euphorbiaceae/metabolismo , Proteínas de Plantas/genética , Sementes/metabolismo , Triglicerídeos/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Euphorbiaceae/genética , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Luz , Ácidos Linolênicos/genética , Ácidos Linolênicos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Árvores , Triglicerídeos/genética
8.
Front Plant Sci ; 12: 648494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168663

RESUMO

WRINKLED1 (WRI1), a member of the APETALA2 (AP2) class of transcription factors regulates fatty acid biosynthesis and triacylglycerol (TAG) accumulation in plants. Among the four known Arabidopsis WRI1 paralogs, only WRI2 was unable to complement and restore fatty acid content in wri1-1 mutant seeds. Avocado (Persea americana) mesocarp, which accumulates 60-70% dry weight oil content, showed high expression levels for orthologs of WRI2, along with WRI1 and WRI3, during fruit development. While the role of WRI1 as a master regulator of oil biosynthesis is well-established, the function of WRI1 paralogs is poorly understood. Comprehensive and comparative in silico analyses of WRI1 paralogs from avocado (a basal angiosperm) with higher angiosperms Arabidopsis (dicot), maize (monocot) revealed distinct features. Predictive structural analyses of the WRI orthologs from these three species revealed the presence of AP2 domains and other highly conserved features, such as intrinsically disordered regions associated with predicted PEST motifs and phosphorylation sites. Additionally, avocado WRI proteins also contained distinct features that were absent in the nonfunctional Arabidopsis ortholog AtWRI2. Through transient expression assays, we demonstrated that both avocado WRI1 and WRI2 are functional and drive TAG accumulation in Nicotiana benthamiana leaves. We predict that the unique features and activities of ancestral PaWRI2 were likely lost in orthologous genes such as AtWRI2 during evolution and speciation, leading to at least partial loss of function in some higher eudicots. This study provides us with new targets to enhance oil biosynthesis in plants.

9.
Plant Physiol ; 184(2): 720-737, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732347

RESUMO

Seed triacylglycerol (TAG) biosynthesis involves a metabolic network containing multiple different diacylglycerol (DAG) and acyl donor substrate pools. This network of pathways overlaps with those for essential membrane lipid synthesis and utilizes multiple different classes of TAG biosynthetic enzymes. Acyl flux through this network ultimately dictates the final oil fatty acid composition. Most strategies to alter seed oil composition involve the overexpression of lipid biosynthetic enzymes, but how these enzymes are assembled into metabolons and which substrate pools are used by each is still not well understood. To understand the roles of different classes of TAG biosynthetic acyltransferases in seed oil biosynthesis, we utilized the Arabidopsis (Arabidopsis thaliana) diacylglycerol acyltransferase mutant dgat1-1 (in which phosphatidylcholine:diacylglycerol acyltransferase (AtPDAT1) is the major TAG biosynthetic enzyme), and enhanced TAG biosynthesis by expression of Arabidopsis acyltransferases AtDGAT1 and AtDGAT2, as well as the DGAT2 enzymes from soybean (Glycine max), and castor (Ricinus communis), followed by isotopic tracing of glycerol flux through the lipid metabolic network in developing seeds. The results indicate each acyltransferase has a unique effect on seed oil composition. AtDGAT1 produces TAG from a rapidly produced phosphatidylcholine-derived DAG pool. However, AtPDAT1 and plant DGAT2 enzymes utilize a different and larger bulk phosphatidylcholine-derived DAG pool that is more slowly turned over for TAG biosynthesis. Based on metabolic fluxes and protein:protein interactions, our model of TAG synthesis suggests that substrate channeling to select enzymes and spatial separation of different acyltransferases into separate metabolons affect efficient TAG production and oil fatty acid composition.


Assuntos
Aciltransferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Sementes/metabolismo , Triglicerídeos/biossíntese , Arabidopsis
10.
Plant Mol Biol ; 103(1-2): 75-89, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32040758

RESUMO

KEY MESSAGE: Multiple variables that control the relative levels of successful heritable plant genome editing were addressed using simple case studies in Arabidopsis thaliana. The recent advent of genome editing technologies (especially CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats) has revolutionized various fields of scientific research. The process is much more specific than previous mutagenic processes and allows for targeting of nearly any gene of interest for the creation of loss-of-function mutations and many other types of editing, including gene-replacement and gene activation. However, not all CRISPR construct designs are successful, due to several factors, including differences in the strength and cell- or tissue-type specificity of the regulatory elements used to express the Cas9 (CRISPR Associated protein 9) DNA nuclease and single guide RNA components, and differences in the relative editing efficiency at different target areas within a given gene. Here we compare the levels of editing created in Arabidopsis thaliana by CRISPR constructs containing either different promoters, or altered target sites with varied levels of guanine-cytosine base content. Additionally, nuclease activity at sites targeted by imperfectly matched single guide RNAs was observed, suggesting that while the primary goal of most CRISPR construct designs is to achieve rapid, robust, heritable gene editing, the formation of unintended mutations at other genomic loci must be carefully monitored.


Assuntos
Arabidopsis/genética , Edição de Genes , Sistemas CRISPR-Cas , Citosina/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Guanosina/metabolismo , Mutação
11.
Planta ; 249(5): 1285-1299, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30610363

RESUMO

MAIN CONCLUSION: In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.


Assuntos
Aciltransferases/metabolismo , Euphorbiaceae/enzimologia , Euphorbiaceae/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Ricinoleicos/metabolismo
12.
Plant Cell Rep ; 37(11): 1571-1583, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30083958

RESUMO

KEY MESSAGE: This report describes the most extensive known gene discovery study from an oilseed that produces cyclopropane fatty acids, a novel industrial feedstock. Nature contains hundreds of examples of plant species that accumulate unusual fatty acids in seed triacylglycerols (TAG). Although lipid metabolic genes have been cloned from several exotic plant species, the underlying mechanisms that control the production of novel TAG species are still poorly understood. One such class of unusual fatty acids contain in-chain cyclopropane or cyclopropene functionalities that confer chemical and physical properties useful in the synthesis of lubricants, cosmetics, dyes, coatings, and other types of valuable industrial feedstocks. These cyclopropyl fatty acids, or CPFAs, are only produced by a small number of plants, primarily in the order Malvidae. Litchi chinensis is one member of this group; its seed oil contains at least 40 mol% CPFAs. Several genes, representing early, middle, and late steps in the Litchi fatty acid and TAG biosynthetic pathways have been cloned and characterized here. The tissue-specific and developmental transcript expression profiles and biochemical characteristics observed indicate which enzymes might play a larger role in Litchi seed TAG biosynthesis and accumulation. These data, therefore, provide insights into which genes likely represent the best targets for either silencing or overexpression, in future metabolic engineering strategies aimed at altering CPFA content.


Assuntos
Ciclopropanos/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/biossíntese , Litchi/enzimologia , Ciclopropanos/química , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/química , Frutas/metabolismo , Metabolismo dos Lipídeos , Litchi/química , Litchi/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/genética , Transcriptoma , Triglicerídeos/síntese química , Triglicerídeos/metabolismo
13.
Plant Cell Physiol ; 59(10): 1990-2003, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137600

RESUMO

The tung tree (Vernicia fordii) is one of only a few plant species that produces high oil-yielding seeds rich in α-eleostearic acid (α-ESA, 18:3Δ9cis, 11trans, 13trans), a conjugated trienoic fatty acid with valuable industrial and medical properties. Previous attempts have been made to engineer tung oil biosynthesis in transgenic oilseed crops, but these efforts have met with limited success. Here we present a high-quality genome assembly and developing seed transcriptomic data set for this species. Whole-genome shotgun sequencing generated 176 Gb of genome sequence data used to create a final assembled sequence 1,176,320 kb in size, with a scaffold N50 size of >474 kb, and containing approximately 47,000 protein-coding genes. Genomic and transcriptomic data revealed full-length candidate genes for most of the known and suspected reactions that are necessary for fatty acid desaturation/conjugation, acyl editing and triacylglycerol biosynthesis. Seed transcriptomic analyses also revealed features unique to tung tree, including unusual transcriptional profiles of fatty acid biosynthetic genes, and co-ordinated (and seemingly paradoxical) simultaneous up-regulation of both fatty acid ß-oxidation and triacylglycerol biosynthesis in mid-development seeds. The precise temporal control of the expression patterns for these two pathways may account for α-ESA enrichment in tung seeds, while controlling the levels of potentially toxic by-products. Deeper understanding of these processes may open doors to the design of engineered oilseeds containing high levels of α-ESA.


Assuntos
Genoma de Planta/genética , Ácidos Linolênicos/metabolismo , Sementes/metabolismo , Transcriptoma/genética , Triglicerídeos/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
14.
Front Plant Sci ; 8: 1751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085382

RESUMO

Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triacylglycerol (TAG) biosynthesis via the acyl-CoA-dependent acylation of diacylglycerol. This reaction is a major control point in the Kennedy pathway for biosynthesis of TAG, which is the most important form of stored metabolic energy in most oil-producing plants. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar 'Luhua 14.' Sequence analysis of 11 different peanut cultivars revealed a gene family of 8 peanut DGAT2 genes (designated AhDGAT2a-h). Sequence alignments revealed 21 nucleotide differences between the eight ORFs, but only six differences result in changes to the predicted amino acid (AA) sequences. A representative full-length cDNA clone (AhDGAT2a) was characterized in detail. The biochemical effects of altering the AhDGAT2a sequence to include single variable AA residues were tested by mutagenesis and functional complementation assays in transgenic yeast systems. All six mutant variants retained enzyme activity and produced lipid droplets in vivo. The N6D and A26P mutants also displayed increased enzyme activity and/or total cellular fatty acid (FA) content. N6D mutant mainly increased the content of palmitoleic acid, and A26P mutant mainly increased the content of palmitic acid. The A26P mutant grew well both in the presence of oleic and C18:2, but the other mutants grew better in the presence of C18:2. AhDGAT2 is expressed in all peanut organs analyzed, with high transcript levels in leaves and flowers. These levels are comparable to that found in immature seeds, where DGAT2 expression is most abundant in other plants. Over-expression of AhDGAT2a in tobacco substantially increased the FA content of transformed tobacco seeds. Expression of AhDGAT2a also altered transcription levels of endogenous tobacco lipid metabolic genes in transgenic tobacco, apparently creating a larger carbon 'sink' that supports increased FA levels.

15.
J Plant Physiol ; 219: 62-70, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031100

RESUMO

Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an agronomically important oilseed crop that is cultivated in many parts of the world. In this study, seven distinct forms of type 1 DGAT (AhDGAT1.1-AhDGAT1.7) were identified, cloned, and characterized. Comparisons of the nucleotide sequences and gene structures revealed many different splicing variants of AhDGAT1, some of which displayed different organ-specific expression patterns. A representative gene (AhDGAT1.1) was transformed into wild-type tobacco and was shown to increase seed fatty acid (FA) content by 14.7%-20.9%. All seven AhDGAT1s were expressed in TAG-deficient Saccharomyces cerevisiae strain H1246; the five longest AhDGAT1 variants generated high levels of acyltransferase activity and complemented the free fatty acid lethality phenotype in this strain. The alternative splicing that gives rise to AhDGAT1.2 and AhDGAT1.4 creates predicted protein C-terminal truncations. The proteins encoded by these two variants were not active and did not complement the fatty acid sensitivity in H1246. These results were verified by visualization of intracellular lipid droplets using Nile Red staining. Collectively, the results presented here represent the first comprehensive analysis of the peanut DGAT1 gene family, which, unlike in other published plant DGAT1 sequences, shows widespread alternative splicing that may affect the expression patterns and enzyme activities of some members of the gene family.


Assuntos
Processamento Alternativo , Arachis/genética , Diacilglicerol O-Aciltransferase/genética , Proteínas de Plantas/genética , Transcriptoma , Triglicerídeos/metabolismo , Arachis/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Microrganismos Geneticamente Modificados/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética
16.
Plant Biotechnol J ; 15(8): 1010-1023, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28083898

RESUMO

The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos/biossíntese , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Linolênicos/biossíntese , Ácidos Linolênicos/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
17.
Planta ; 245(3): 611-622, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27988886

RESUMO

MAIN CONCLUSION: Some naturally occurring cotton accessions contain commercially attractive seed oil fatty acid profiles. The likely causal factor for a high-oleate trait in pima cotton ( Gossypium barbadense ) accession GB-713 is described here. Vegetable oils are broadly used in the manufacture of many human and animal nutritional products, and in various industrial applications. Along with other well-known edible plant oils from soybean, corn, and canola, cottonseed oil is a valuable commodity. Cottonseed oil is a co-product derived from the processing of cottonseed fiber. In the past, it was used extensively in a variety of food applications. However, cottonseed oil has lost market share in recent years due to less than optimal ratios of the constituent fatty acids found in either traditional or partially hydrogenated oil. Increased awareness of the negative health consequences of dietary trans-fats, along with the public wariness associated with genetically modified organisms has created high demand for naturally occurring oil with high monounsaturate/polyunsaturate ratios. Here, we report the discovery of multiple exotic accessions of pima cotton that contain elevated seed oil oleate content. The genome of one such accession was sequenced, and a mutant candidate fatty acid desaturase-2 (FAD2-1D) gene was identified. The mutant protein produced significantly less linoleic acid in infiltrated Arabidopsis leaf assays, compared to a repaired version of the same enzyme. Identification of this gene provides a valuable resource. Development of markers associated with this mutant locus will be very useful in efforts to breed the high-oleate trait into agronomic fiber accessions of upland cotton.


Assuntos
Alelos , Óleo de Sementes de Algodão/química , Ácidos Graxos Dessaturases/genética , Gossypium/enzimologia , Mutação/genética , Ácido Oleico/metabolismo , Sequência de Aminoácidos , Cromatografia Gasosa , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Ácido Linoleico/análise , Filogenia , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Molecules ; 21(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834836

RESUMO

The tung tree (Vernicia fordii), a non-model woody plant belonging to the Euphorbiaceae family, is a promising economic plant due to the high content of a novel high-value oil in its seeds. Many metabolic pathways are active during seed development. Oil (triacylglycerols (TAGs)) accumulates in oil bodies distributed in the endosperm cells of tung tree seeds. The relationship between oil bodies and oil content during tung tree seed development was analyzed using ultrastructural observations, which confirmed that oil accumulation was correlated with the volumes and numbers of oil bodies in the endosperm cells during three different developmental stages. For a deeper understanding of seed development, we carried out proteomic analyses. At least 144 proteins were differentially expressed during three different developmental stages. A total of 76 proteins were successfully identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry/mass spectrometry (MALDI-TOF/MS/MS). These proteins were grouped into 11 classes according to their functions. The major groups of differentially expressed proteins were associated with energy metabolism (25%), fatty acid metabolism (15.79%) and defense (14.47%). These results strongly suggested that a very high percentage of gene expression in seed development is dedicated to the synthesis and accumulation of TAGs.


Assuntos
Aleurites/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteômica/métodos , Sementes/crescimento & desenvolvimento , Aleurites/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gotículas Lipídicas/metabolismo , Redes e Vias Metabólicas , Óleos de Plantas/química , Sementes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Triglicerídeos/metabolismo
19.
Sci Rep ; 6: 22181, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916792

RESUMO

Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.


Assuntos
Reatores Biológicos , Brassicaceae/metabolismo , Produtos Agrícolas/metabolismo , Engenharia Metabólica , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Brassicaceae/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
20.
Plant Physiol ; 170(1): 163-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586834

RESUMO

The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Triglicerídeos/biossíntese , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes Essenciais , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Homozigoto , Lipídeos de Membrana/biossíntese , Mutação , Plantas Geneticamente Modificadas , Pólen/genética , Sementes/química , Sementes/genética , Sementes/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...