Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 11(18): 3693-705, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25823723

RESUMO

In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that the physical properties of the substrate (substrate's ligand spacing and stiffness) have considerable effects on the cell adhesion and motility kinetics. For a rigid substrate with uniform distribution of immobile ligands, the maximum ligand spacing which does not interrupt adhesion growth is found to be about 57 nm. It is also found that as a consequence of the reduction in the energy dissipation in the isolated adhesion system, cell adhesion is facilitated by increasing substrate's stiffness. Moreover, the directional movement of cells on a substrate with gradients in mechanical compliance is explored with an extension of the adhesion formulation. It is shown that cells tend to move from soft to stiff regions of the substrate, but their movement is decelerated as the stiffness of the substrate increases. These findings based on the proposed theoretical model are in excellent agreement with the previous experimental observations.


Assuntos
Modelos Teóricos , Animais , Adesão Celular , Movimento Celular , Difusão , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Cinética , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Termodinâmica
2.
J Biomech Eng ; 135(4): 041004, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24231899

RESUMO

An analytical approach which is popular in micromechanical studies has been extended to the solution for the interference fit problem of the femoral stem in cementless total hip arthroplasty (THA). The multiple inhomogeneity problem of THA in transverse plane, including an elliptical stem, a cortical wall, and a cancellous layer interface, was formulated using the equivalent inclusion method (EIM) to obtain the induced interference elastic fields. Results indicated a maximum interference fit of about 210 µm before bone fracture, predicted based on the Drucker-Prager criterion for a partially reamed section. The cancellous layer had a significant effect on reducing the hoop stresses in the cortical wall; the maximum press fit increased to as high as 480 µm for a 2 mm thick cancellous. The increase of the thickness and the mechanical quality, i.e., stiffness and strength, of the cortical wall also increased the maximum interference fit before fracture significantly. No considerable effect was found for the implant material on the maximum allowable interference fit. It was concluded that while larger interference fits could be adapted for younger patients, care must be taken when dealing with the elderly and those suffering from osteoporosis. A conservative reaming procedure is beneficial for such patients; however, in order to ensure sufficient primary stability without risking bone fracture, a preoperative analysis might be necessary.


Assuntos
Artroplastia de Quadril/efeitos adversos , Simulação por Computador , Fraturas do Fêmur/etiologia , Período Intraoperatório , Risco , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA