Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Neurotrauma ; 41(3-4): 430-446, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37776183

RESUMO

The blood-brain barrier (BBB) is composed of brain microvasculature that provides selective transport of solutes from the systemic circulation into the central nervous system to protect the brain and spinal microenvironment. Damage to the BBB in the acute phase after traumatic brain injury (TBI) is recognized as a major underlying mechanism leading to secondary long-term damage. Because of the lack of technological ability to detect subtle BBB disruption (BBBd) in the chronic phase, however, the presence of chronic BBBd is disputable. Thus, the dynamics and course of long-term BBBd post-TBI remains elusive. Thirty C57BL/6 male mice subjected to TBI using our weight drop closed head injury model and 19 naïve controls were scanned by magnetic resonance imaging (MRI) up to 540 days after injury. The BBB maps were calculated from delayed contrast extravasation MRI (DCM) with high spatial resolution and high sensitivity to subtle BBBd, enabling depiction and quantification of BBB permeability. At each time point, 2-6 animals were sacrificed and their brains were extracted, sectioned, and stained for BBB biomarkers including: blood microvessel coverage by astrocyte using GFAP, AQP4, ZO-1 gaps, and IgG leakage. We found that DCM provided depiction of subtle yet significant BBBd up to 1.5 years after TBI, with significantly higher sensitivity than standard contrast-enhanced T1-weighted and T2-weighted MRI (BBBd volumes main effect DCM/T1/T2 p < 0.0001 F(2,70) = 107.3, time point p < 0.0001 F(2,133, 18.66) = 23.53). In 33% of the cases, both in the acute and chronic stages, there was no detectable enhancement on standard T1-MRI, nor detectable hyperintensities on T2-MRI, whereas DCM showed significant BBBd volumes. The BBBd values of TBI mice at the chronic stage were found significantly higher compared with age matched naïve animals at 30, 60, and 540 days. The calculated BBB maps were histologically validated by determining significant correlation between the calculated levels of disruption and a diverse set of histopathological parameters obtained from different brain regions, presenting different components of the BBB. Cumulative evidence from recent years points to BBBd as a central component of the pathophysiology of TBI. Therefore, it is expected that routine use of highly sensitive non-invasive techniques to measure BBBd, such as DCM with advanced analysis methods, may enhance our understanding of the changes in BBB function after TBI. Application of the DCM technology to other CNS disorders, as well as to normal aging, may shed light on the involvement of chronic subtle BBBd in these conditions.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Masculino , Animais , Camundongos , Barreira Hematoencefálica/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Encéfalo/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Lesões Encefálicas Traumáticas/diagnóstico por imagem
2.
Sci Rep ; 13(1): 22260, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097614

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, particularly among individuals under the age of 45. It is a complex, and heterogeneous disease with a multifaceted pathophysiology that remains to be elucidated. Metabolomics has the potential to identify metabolic pathways and unique biochemical profiles associated with TBI. Herein, we employed a longitudinal metabolomics approach to study TBI in a weight drop mouse model to reveal metabolic changes associated with TBI pathogenesis, severity, and secondary injury. Using proton nuclear magnetic resonance (1H NMR) spectroscopy, we biochemically profiled post-mortem brain from mice that suffered mild TBI (N = 25; 13 male and 12 female), severe TBI (N = 24; 11 male and 13 female) and sham controls (N = 16; 11 male and 5 female) at baseline, day 1 and day 7 following the injury. 1H NMR-based metabolomics, in combination with bioinformatic analyses, highlights a few significant metabolites associated with TBI severity and perturbed metabolism related to the injury. We report that the concentrations of taurine, creatinine, adenine, dimethylamine, histidine, N-Acetyl aspartate, and glucose 1-phosphate are all associated with TBI severity. Longitudinal metabolic observation of brain tissue revealed that mild TBI and severe TBI lead distinct metabolic profile changes. A multi-class model was able to classify the severity of injury as well as time after TBI with estimated 86% accuracy. Further, we identified a high degree of correlation between respective hemisphere metabolic profiles (r > 0.84, p < 0.05, Pearson correlation). This study highlights the metabolic changes associated with underlying TBI severity and secondary injury. While comprehensive, future studies should investigate whether: (a) the biochemical pathways highlighted here are recapitulated in the brain of TBI sufferers and (b) if the panel of biomarkers are also as effective in less invasively harvested biomatrices, for objective and rapid identification of TBI severity and prognosis.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Masculino , Feminino , Camundongos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Metabolômica/métodos , Metaboloma , Prognóstico , Concussão Encefálica/complicações
3.
Transl Stroke Res ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962771

RESUMO

Extremely low-frequency, low-intensity electromagnetic field (ELF-EMF) therapy is a non-invasive brain stimulation method that can modulate neuroprotection and neuroplasticity. ELF-EMF was recently shown to enhance recovery in human stroke in a small pilot clinical trial (NCT04039178). ELF-EMFs encompass a wide range of frequencies, typically ranging from 1 to 100 Hz, and their effects can vary depending on the specific frequency employed. However, whether and to what extent the effectiveness of ELF-EMFs depends on the frequency remains unclear. In the present study, we aimed to assess the efficacy of different frequency-intensity protocols of ELF-EMF in promoting functional recovery in a mouse cortical stroke model with treatment initiated 4 days after the stroke, employing a series of motor behavior tests. Our findings demonstrate that a theta-frequency ELF-EMF (5 Hz) effectively enhances functional recovery in a reach-to-grasp task, whereas neither gamma-frequency (40 Hz) nor combination frequency (5-16-40 Hz) ELF-EMFs induce a significant effect. Importantly, our histological analysis reveals that none of the ELF-EMF protocols employed in our study affect infarct volume, inflammatory, or glial activation, suggesting that the observed beneficial effects may be mediated through non-neuroprotective mechanisms. Our data indicate that ELF-EMFs have an influence on functional recovery after stroke, and this effect is contingent upon the specific frequency used. These findings underscore the critical importance of optimizing the protocol parameters to maximize the beneficial effects of ELF-EMF. Further research is warranted to elucidate the underlying mechanisms and refine the protocol parameters for optimal therapeutic outcomes in stroke rehabilitation.

4.
Neurotrauma Rep ; 4(1): 560-572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636339

RESUMO

Traumatic brain injury (TBI), which is characterized by damage to the brain resulting from a sudden traumatic event, is a major cause of death and disability worldwide. It has short- and long-term effects, including neuroinflammation, cognitive deficits, and depression. TBI consists of multiple steps that may sometimes have opposing effects or mechanisms, making it challenging to investigate and translate new knowledge into effective therapies. In order to better understand and address the underlying mechanisms of TBI, we have developed an in vitro platform that allows dynamic simulation of TBI conditions by applying external magnetic forces to induce acceleration and deceleration injury, which is often observed in human TBI. Endothelial and neuron-like cells were successfully grown on magnetic gels and applied to the platform. Both cell types showed an instant response to the TBI model, but the endothelial cells were able to recover quickly-in contrast to the neuron-like cells. In conclusion, the presented in vitro model mimics the mechanical processes of acceleration/deceleration injury involved in TBI and will be a valuable resource for further research on brain injury.

5.
Neurotrauma Rep ; 4(1): 255-266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095852

RESUMO

Traumatic brain injury (TBI) is a major health problem that affects millions of persons worldwide every year among all age groups, mainly young children, and elderly persons. It is the leading cause of death for children under the age of 16 and is highly correlated with a variety of neuronal disorders, such as epilepsy, and neurodegenerative disease, such as Alzheimer's disease or amyotrophic lateral sclerosis. Over the past few decades, our comprehension of the molecular pathway of TBI has improved, yet despite being a major public health issue, there is currently no U.S. Food and Drug Administration-approved treatment for TBI, and a gap remains between these advances and their application to the clinical treatment of TBI. One of the major hurdles for pushing TBI research forward is the accessibility of TBI models and tools. Most of the TBI models require costume-made, complex, and expensive equipment, which often requires special knowledge to operate. In this study, we present a modular, three-dimensional printed TBI induction device, which induces, by the pulse of a pressure shock, a TBI-like injury on any standard cell-culture tool. Moreover, we demonstrate that our device can be used on multiple systems and cell types and can induce repetitive TBIs, which is very common in clinical TBI. Further, we demonstrate that our platform can recapitulate the hallmarks of TBI, which include cell death, decrease in neuronal functionality, axonal swelling (for neurons), and increase permeability (for endothelium). In addition, in view of the continued discussion on the need, benefits, and ethics of the use of animals in scientific research, this in vitro, high-throughput platform will make TBI research more accessible to other labs that prefer to avoid the use of animals yet are interested in this field. We believe that this will enable us to push the field forward and facilitate/accelerate the availability of novel treatments.

6.
Front Neurol ; 13: 1004677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452175

RESUMO

Background and purpose: Impaired upper extremity (UE) motor function is a common disability after ischemic stroke. Exposure to extremely low frequency and low intensity electromagnetic fields (ELF-EMF) in a frequency-specific manner (Electromagnetic Network Targeting Field therapy; ENTF therapy) is a non-invasive method available to a wide range of patients that may enhance neuroplasticity, potentially facilitating motor recovery. This study seeks to quantify the benefit of the ENTF therapy on UE motor function in a subacute ischemic stroke population. Methods: In a randomized, sham-controlled, double-blind trial, ischemic stroke patients in the subacute phase with moderately to severely impaired UE function were randomly allocated to active or sham treatment with a novel, non-invasive, brain computer interface-based, extremely low frequency and low intensity ENTF therapy (1-100 Hz, < 1 G). Participants received 40 min of active ENTF or sham treatment 5 days/week for 8 weeks; ~three out of the five treatments were accompanied by 10 min of concurrent physical/occupational therapy. Primary efficacy outcome was improvement on the Fugl-Meyer Assessment - Upper Extremity (FMA-UE) from baseline to end of treatment (8 weeks). Results: In the per protocol set (13 ENTF and 8 sham participants), mean age was 54.7 years (±15.0), 19% were female, baseline FMA-UE score was 23.7 (±11.0), and median time from stroke onset to first stimulation was 11 days (interquartile range (IQR) 8-15). Greater improvement on the FMA-UE from baseline to week 4 was seen with ENTF compared to sham stimulation, 23.2 ± 14.1 vs. 9.6 ± 9.0, p = 0.007; baseline to week 8 improvement was 31.5 ± 10.7 vs. 23.1 ± 14.1. Similar favorable effects at week 8 were observed for other UE and global disability assessments, including the Action Research Arm Test (Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008), Box and Blocks Test (affected hand, 22.5 ± 12.4 vs. 8.5 ± 8.6, p < 0.0001), and modified Rankin Scale (-2.5 ± 0.7 vs. -1.3 ± 0.7, p = 0.0005). No treatment-related adverse events were reported. Conclusions: ENTF stimulation in subacute ischemic stroke patients was associated with improved UE motor function and reduced overall disability, and results support its safe use in the indicated population. These results should be confirmed in larger multicenter studies. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04039178, identifier: NCT04039178.

7.
Exp Neurol ; 338: 113604, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453212

RESUMO

CCR5 and CXCR4 are structurally related chemokine receptors that belong to the superfamily of G-protein coupled receptors through which the HIV virus enters and infects cells. Both receptors are also related to HIV-associated neurocognitive disorders that include difficulties in concentration and memory, impaired executive functions, psychomotor slowing, depression and irritability, which are also hallmarks of the long-term sequelae of TBI. Moreover, A growing body of evidence attributes negative influences to CCR5 activation on cognition, particularly after stroke and traumatic brain injury (TBI). Here we investigated the effect of their blockage on motor and cognitive functions, on brain tissue loss and preservation and on some of the biochemical pathways involved. We examined the effect of maraviroc, a CCR5 antagonist used in HIV patients as a viral entry inhibitor, and of plerixafor (AMD3100), a CXCR4 antagonist used in cancer patients as an immune-modulator, on mice subjected to closed head injury (CHI). Mice were treated with maraviroc or plerixafor after CHI for the following 4 or 5 days, respectively. Neurobehavior was assessed according to the Neurological Severity Score; cognitive tests were performed by using the Y-maze, Barnes maze and the novel object recognition test; anxiety was evaluated with the open field test. The mice were sacrificed and brain tissues were collected for Western blot, pathological and immunohistochemical analyses. Both drugs enhanced tissue preservation in the cortex, hippocampus, periventricular areas, corpus callosum and striatum, and reduced astrogliosis)GFAP expression). They also increased the levels of synaptic cognition-related signaling molecules such as phosphorylated NR1 and CREB, and the synaptic plasticity protein PSD95. Both treatments also enhanced the expression of CCR5 and CXCR4 on different brain cell types. In summary, the beneficial effects of blocking CCR5 and CXCR4 after CHI suggest that the drugs used in this study, both FDA approved and in clinical use, should be considered for translational research in TBI patients.


Assuntos
Benzilaminas/farmacologia , Lesões Encefálicas Traumáticas , Encéfalo/efeitos dos fármacos , Ciclamos/farmacologia , Maraviroc/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Antagonistas dos Receptores CCR5/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inibidores
8.
J Neurotrauma ; 38(14): 2003-2017, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33256497

RESUMO

Recently, chemokine receptor CC chemokine receptor 5 (CCR5) was found to be a negative modulator of learning and memory. Its inhibition improved outcome after stroke and traumatic brain injury (TBI). To better understand its role after TBI and establish therapeutic strategies, we investigated the effect of reduced CCR5 signaling as a neuroprotective strategy and of the temporal changes of CCR5 expression after TBI in different brain cell types. To silence CCR5 expression, ccr5 short hairpin RNA (shRNA) or dsred shRNA (control) was injected into the cornu ammonis (CA) 1 and CA3 regions of the hippocampus 2 weeks before induction of closed-head injury in mice. Animals were then monitored for 32 days and euthanized at different time points to assess lesion area, inflammatory components of the glial response (immunohistochemistry; IHC), cytokine levels (enzyme-linked immunosorbent array), and extracellular signal-regulated kinase (ERK) phosphorylation (western blot). Fluorescence-activated cell sorting (FACS) analysis was performed to study post-injury temporal changes of CCR5 and C-X-C motif chemokine receptor 4 (CXCR4) expression in cortical and hippocampal cell populations (neurons, astrocytes, and microglia). Phosphorylation of the N-methyl-d-aspartate subunit 1 (NR1) subunit of N-methyl-d-aspartate (western blot) and cAMP-response-element-binding protein (CREB; IHC) were also assessed. The ccr5 shRNA mice displayed reduced lesion area, dynamic alterations in levels of inflammation-related CCR5 ligands and cytokines, and higher levels of phosphorylated ERK. The ccr5 shRNA also reduced astrocytosis in the lesioned and sublesioned cortex. FACS analysis revealed increased cortical CCR5 and CXCR4 expression in CD11b-positive cells, astrocytes, and neurons, which was most evident in cells expressing both receptors, at 3 and 11 days post-injury. The lowest levels of phosphorylated NR1 and phosphorylated CREB were found at day 3 post-injury, suggesting that this is the critical time point for therapeutic intervention.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Receptores CCR5/fisiologia , Receptores CXCR4/fisiologia , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica , Fatores de Tempo
9.
Front Neurol ; 11: 999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178093

RESUMO

Traumatic brain injury (TBI), caused by mechanical impact to the brain, is a leading cause of death and disability among young adults, with slow and often incomplete recovery. Preemptive treatment strategies may increase the injury resilience of high-risk populations such as soldiers and athletes. In this work, the xanthophyll carotenoid Astaxanthin was examined as a potential nutritional preconditioning method in mice (sabra strain) to increase their resilience prior to TBI in a closed head injury (CHI) model. The effect of Astaxanthin pretreatment on heat shock protein (HSP) dynamics and functional outcome after CHI was explored by gavage or free eating (in pellet form) for 2 weeks before CHI. Assessment of neuromotor function by the neurological severity score (NSS) revealed significant improvement in the Astaxanthin gavage-treated group (100 mg/kg, ATX) during recovery compared to the gavage-treated olive oil group (OIL), beginning at 24 h post-CHI and lasting throughout 28 days (p < 0.007). Astaxanthin pretreatment in pellet form produced a smaller improvement in NSS vs. posttreatment at 7 days post-CHI (p < 0.05). Cognitive and behavioral evaluation using the novel object recognition test (ORT) and the Y Maze test revealed an advantage for Astaxanthin administration via free eating vs. standard chow during recovery post-CHI (ORT at 3 days, p < 0.035; improvement in Y Maze score from 2 to 29 days, p < 0.02). HSP profile and anxiety (open field test) were not significantly affected by Astaxanthin. In conclusion, astaxanthin pretreatment may contribute to improved recovery post-TBI in mice and is influenced by the form of administration.

10.
Cell ; 176(5): 1143-1157.e13, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30794775

RESUMO

We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Receptores CCR5/metabolismo , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores CCR5/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos
11.
J Neurotrauma ; 36(11): 1836-1846, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30489198

RESUMO

Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana, there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG, which binds to both CB1 and CB2 receptors 1 h after traumatic brain injury in mice, attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region, and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats subjected to closed-head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of tumor necrosis factor α production, increased synaptogenesis, and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Recuperação de Função Fisiológica/fisiologia , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Compostos Bicíclicos com Pontes/farmacologia , Camundongos , Ratos , Receptor CB2 de Canabinoide/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos
12.
Curr Opin Neurol ; 31(6): 687-692, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30382950

RESUMO

PURPOSE OF REVIEW: The failure of N-methyl-D-aspartate receptor (NMDAR) antagonists as a treatment for human traumatic brain injury (TBI) and stroke, along with preclinical findings of a persistent hypofunctional state of these receptors after brain injury, resulted in a new focus on NMDAR agonists, specifically those acting via the glycine site of the NMDAR. This article reviews the recent literature on positive modulators of the glycine site as a new modality for improving cognitive function in central nervous system pathology, including traumatic and ischemic brain injuries, neuroinflammation, and neuropsychiatric disorders. RECENT FINDINGS: A sustained cognitive decline and NMDAR downregulation were reported in rodent models of TBI, developmental TBI, stroke, and lipopolysaccharide-induced neuroinflammation. Activation of the glycine/serine site by D-cycloserine (DCS) or D-serine ameliorated these cognitive deficits. Recent reviews and reports on the use of DCS and D-serine to modify memory function in a wide range of psychiatric conditions are generally positive. SUMMARY: Taken together, the preclinical and clinical studies provide new, additional support for the notion that activation of the glycine/serine site should be considered a novel therapeutic approach to cognitive impairments. Specifically, as DCS is an approved drug, its translation into clinical practice should be advocated.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/agonistas , Animais , Humanos , Ligantes , Resultado do Tratamento
13.
J Neurotrauma ; 35(14): 1667-1680, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648983

RESUMO

Cognitive deficits, especially memory loss, are common and devastating neuropsychiatric sequelae of traumatic brain injury (TBI). The deficits may persist for years and may be accompanied by increased risk of developing early- onset dementia. Past attempts to reverse the neuropathological effects of brain injury with glutamate-N-methyl-d-aspartate (NMDA) antagonists failed to show any benefits or worsened the outcome, suggesting that activation, rather than blockage, of the NMDA receptor (NMDAR) may be useful in the subacute period after TBI and stroke. Activation of the NMDAR requires occupation of the glycine-modulatory site by co-agonists to achieve its synaptic functions. Glycine and d-serine are endogenous ligands/co-agonists of synaptic NMDARs in many areas of the mature brain. The aim of the present study was to evaluate the effect of 6-chlorobenzo(d)isoxazol-3-ol (CBIO), an inhibitor of D-amino acid oxidase (DAAO), which degrades d-serine, on cognitive outcome in a mouse model of TBI. Because treating TBI animals with CBIO elevates the endogenous levels of d-serine, we compared this novel treatment with treatment by exogenous d-serine alone and combined with CBIO. The results show that a single treatment (24 h post-injury) with CBIO in the mouse model of closed head injury significantly improves cognitive and motor function, and decreases lesion volume and the inflammatory response. Moreover, the compound proved to be neuroprotective, as the hippocampal volume and the number of neurons in hippocampal regions increased. Treatment with CBIO boosted the NR1 and phospho- NR1 subunits of the NMDAR and affected the CREB, phospho-CREB, and brain-derived neurotropic factor (BDNF) pathways. These findings render CBIO a promising, novel treatment for cognitive impairment following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Isoxazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Serina/metabolismo , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Cognição/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/agonistas , Serina/farmacologia
14.
J Mol Neurosci ; 64(2): 185-199, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29249007

RESUMO

Human umbilical cord blood (HUCB) transplantation has become an alternative cell therapy for hematological and oncological malignancies in the clinic and is considered for neurological disorders. The heterogeneity in the content of the different stem and progenitor cells composing HUCB mononuclear cells (MNC) may influence their engraftment and neurotherapeutic effect. We hypothesized that CD45 pan-hematopoietic marker expression is heterogeneous in MNC, and therefore, CD45+ subpopulation enrichment for neurotherapy may provide a tool to overcome cellular variance in different HUCB units. We employed an immunomagnetic separation method to isolate and characterize HUCB CD45+ pan-hematopoietic subpopulation and to investigate whether the vaginal or cesarean deliveries influence their neurotherapeutic effect in a traumatic brain injury (TBI) mouse model. Adult C57BL/6J male mice were subjected to moderate TBI and intravenously xenotransplanted with 1 × 106 CD45+ cells derived from either vaginal or cesarean HUCB units. A large heterogeneity in the expression of CD45 marker in MNC, both in vaginal and cesarean HUCB units, was found, regardless of the number of live births. A higher expression of hematopoietic markers was found in the CD45+ subpopulation while low expressional levels of typical mesenchymal markers were detected. Neurotherapeutic effects, evaluated with an established neurological severity score and novel object recognition test, indicated improved functional motor and memory recovery and found independent of delivery type. Cytokine analysis in extracts of TBI brain cortices indicated an acute immunomodulatory effect by HUCB CD45+ subpopulation upon xenotransplantation. These results may provide insights to CD45 marker as a predictor of HUCB units' quality for neurotherapy in TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco/métodos , Adulto , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Imunofenotipagem/métodos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Cytotherapy ; 20(2): 245-261, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274773

RESUMO

BACKGROUND AIMS: Human umbilical cord blood (HUCB) is an important source of stem cells for therapy of hematopoietic disorders and is a potential therapy for various neurological disorders, including traumatic brain injury (TBI). The expression of nerve growth factor (NGF) and its receptors TrkA, p75NTR and α9ß1 integrin on an HUCB CD45+ pan-hematopoietic subpopulation was investigated in the context of its neurotherapeutic potential after TBI. METHODS: NGF and its receptors were detected on CD45+ cells by reverse transcriptase polymerase chain reaction, flow cytometry analysis and confocal microscopy. CD45+ cells were stimulated by TBI brain extracts, and NGF levels were measured by enzyme-linked immunosorbent assay. TBI mice were divided into six groups for xenogeneic intravenous transplantation, 1 day post-trauma, with 1 × 106 CD45+ cells untreated or treated with the anti-NGF neutralizing antibody K252a, a TrkA antagonist; VLO5, an α9ß1 disintegrin; or negative (vehicle) and positive (NGF) controls. RESULTS: The HUCB CD45+ subpopulation constitutively expresses NGF and its receptors, mainly TrkA and p75NTR and minor levels of α9ß1. In vitro experiments provided evidence that trauma-related mediators from brain extracts of TBI mice induced release of NGF from HUCB CD45+ cell cultures. HUCB CD45+ cells induced a neurotherapeutic effect in TBI mice, abrogated by cell treatment with either anti-NGF antibody or K252a, but not VLO5. CONCLUSIONS: These findings strengthen the role of NGF and its TrkA receptor in the HUCB CD45+ subpopulation's neurotherapeutic effect. The presence of neurotrophin receptors in the HUCB CD45+ pan-hematopoietic subpopulation may explain the neuroprotective effect of cord blood in therapy of a variety of neurological disorders.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento Neural/uso terapêutico , Animais , Lesões Encefálicas Traumáticas/patologia , Quimiocina CCL3/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Interleucina-10/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Extratos de Tecidos
16.
J Mol Neurosci ; 60(1): 46-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27421842

RESUMO

Cognitive deficits, especially memory loss, are common following many types of brain insults which are associated with neuroinflammation, although the underlying mechanisms are not entirely clear. The present study aimed to characterize the long-term cognitive and behavioral impairments in a mouse model of neuroinflammation in the absence of other insults and to evaluate the therapeutic potential of D-cycloserine (DCS). DCS is a co-agonist of the NMDA receptor that ameliorates cognitive deficits in models of TBI and stroke. Using a mouse model of global neuroinflammation induced by intracisternal (i.c.) administration of endotoxin (LPS), we found long-lasting microgliosis, memory deficits, impaired LTP, and reduced levels of the obligatory NR1 subunit of the NMDA receptor. A single administration of DCS, 1 day after i.c. LPS reduced microgliosis, reversed the cognitive deficits and restored LTP and NR1 levels. These results demonstrate that neuroinflammation alone, in the absence of trauma or ischemia, can cause persistent (>6 months) memory deficits linked to deranged NNMDA receptor function and suggest a possible role for NMDA co-agonists in reducing the cognitive sequelae of neuroinflammation.


Assuntos
Ciclosserina/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ciclosserina/farmacologia , Gliose , Lipopolissacarídeos/toxicidade , Potenciação de Longa Duração , Masculino , Transtornos da Memória/etiologia , Camundongos , Receptores de N-Metil-D-Aspartato/agonistas
18.
J Basic Clin Physiol Pharmacol ; 27(3): 209-16, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26565551

RESUMO

In recent years, a library of approx. 70 N-acyl aminoacids (NAAAs) was discovered in the rat brain. A particular member of this family of compounds is arachidonoyl serine (AraS), which has generated special interest as a potential therapy for traumatic brain injury (TBI). This is due to its structural similarity to the endocannabinoid (eCB) 2-arachidonoyl glycerol (2-AG), which was previously shown to be beneficial in the recovery in a closed head injury model of TBI. Indeed, AraS exerted eCB-mediated neuroprotection, which was evident in numerous aspects related to the secondary damage characterizing TBI. These findings promoted broadening of the research to additional compounds of the NAAA family that share a structural similarity to AraS, namely, palmitoyl serine (PalmS) and oleoyl serine. The latter did not exhibit any improvement in recovery, whereas the former displayed some neuroprotection, albeit inferior to 2-AG and AraS, via unknown mechanisms. Interestingly, when a combined treatment of 2-AG, AraS and PalmS was tested, the overall effect on the severity score was inferior to their individual effects, suggesting not only a lack of direct or indirect synergism, but also possibly some spatial hindrance. Taken together, the complexity of the damage caused by TBI and the many open questions concerning the role of the eCB system in health and disease, the findings so far may serve as a small trace to the understanding of the eCB system, as well as of the mechanisms underlying TBI.


Assuntos
Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Endocanabinoides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Encéfalo/efeitos dos fármacos , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Glicerídeos/farmacologia , Glicerídeos/uso terapêutico , Humanos
20.
Front Neurosci ; 9: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283898

RESUMO

Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA) develops via altered molecular programs such as cross-tolerance Heat Acclimation-Neuroprotection Cross-Tolerance (HANCT). The mechanisms underlying cross-tolerance depend on enhanced "on-demand" protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI). The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...