Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(6): 794-802, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36967652

RESUMO

MXenes are emerging sensing materials due to their metallic conductivity and rich surface chemistry for analytes; they, however, suffer from poor stability. Incorporation with functional polymers can largely prevent the performance decay and enhance the sensing performance. Herein, we demonstrate a core-shell composite, Ti3C2Tx@croconaine (poly(1,5-diaminonaphthalene-croconaine), PDAC) prepared by a facile in situ polymerization reaction, suitable for NH3 detection. Compared to pristine Ti3C2Tx, the sensor made of a Ti3C2Tx-polycroconaine composite exhibits a significantly enhanced sensitivity of 2.8% ppm-1 and an estimated achievable limit of detection of 50 ppb. The improved sensing performance could be attributed to the presence of PDAC facilitating the adsorption of NH3 and changing the tunneling conductivity between Ti3C2Tx domains. Density functional theory (DFT) calculations reveal that the adsorption energy of NH3 on PDAC is the highest among the tested gases, which supports the selectivity of the sensor to this analyte. Benefiting from the protection conferred by the PDAC shell, the composite has a reliable operation period of at least 40 days. In addition, we demonstrated a flexible paper-based sensor of the Ti3C2Tx@PDAC composite, without attenuated performance upon mechanical deformation. This work proposed a novel mechanism and a feasible methodology to synthesize MXene-polymer composites with improved sensitivity and stability for chemical sensing.

2.
ACS Appl Mater Interfaces ; 13(41): 49301-49312, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609829

RESUMO

The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0-26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.

3.
Mikrochim Acta ; 187(2): 117, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31925565

RESUMO

The room temperature polar vapor sensing behavior of a graphene-TiS3 heterojunction material and TiS3 nanoribbons is described. The nanoribbons were synthesized via chemical vapor transport (CVT) and their structure was investigated by scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Raman and Fourier transform infrared spectroscopies. The gas sensing performance was assessed by following the changes in their resistivities. Sensing devices were fabricated with gold contacts and with lithographically patterned graphene (Gr) electrodes in a heterojunction Gr-TiS3-Gr. The gold contacted TiS3 device has a rather linear I-V behavior while the Gr-TiS3-Gr heterojunction forms a contact with a higher Schottky barrier (250 meV). The I-V responses of the sensors were recorded at room temperature at a relative humidity of 55% and for different ethanol vapor concentrations (varying from 2 to 20 ppm). The plots indicate an increase in the resistance of Gr-TiS3-Gr due to adsorption of water and ethanol with a relatively high sensing response (~495% at 2 ppm). The results reveal that stable responses to 2 ppm concentrations of ethanol are achieved at room temperature. The response and recovery times are around 8 s and 72 s, respectively. Weaker responses are obtained for methanol and acetone. Graphical abstract Schematic representation of resistance sensor for detection of low concentration of ethanol vapor. The graphene and TiS3 nanoribbons were synthesized using chemical vapor deposition and chemical vapor transport technique respectively. The 2D graphene/TiS3 heterojunction device was fabricated to make a high response sensor due to their synergy effect.

4.
Adv Mater ; 28(16): 3216-22, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26924431

RESUMO

Mo-based van der Waals heterojunction p-n diodes with p-type α-MoTe2 and n-type MoS2 are fabricated on glass, and demonstrate excellent static and dynamic device performances at a low voltage of 5 V, with an ON/OFF current ratio higher than 10(3) , ideality factors of 1.06, dynamic rectification at a high frequency of 1 kHz, high photoresponsivity of 322 mA W(-1) , and an external quantum efficiency of 85% under blue-light illumination.

5.
Adv Mater ; 27(1): 150-6, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377731

RESUMO

A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...