Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639053

RESUMO

The expanding applications of X-ray scintillation across various areas, from healthcare to security detection call for the development of new-generation scintillators that offer enhanced sensitivity, efficiency, and versatility. Here, we report for the first time the use of organic metal halide complexes with aggregation-induced emission (AIE) for X-ray scintillation, which can be facilely synthesized and processed in the solution phase. By reacting an AIE organic molecule, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyridinium (TPA-PD) with zinc chloride (ZnCl2) in solution at room temperature, an organic metal halide complex, (TPA-PD)2ZnCl2, is produced with a high synthetic yield of 87%. Optical and radioluminescence characterizations find that (TPA-PD)2ZnCl2 exhibits bluish-green photoluminescence and radioluminescence peaked at around 450 nm, with a photoluminescence quantum efficiency (PLQE) of 65%, and an absolute light yield of 13 423 Photon per MeV. Moreover, short photoluminescence and radioluminescence decay lifetimes are recorded at 1.81 ns and 5.24 ns, respectively. For X-ray scintillation, an excellent response dose-response linearity and a low limit of detection of 80.23 nGyair S-1 are obtained for (TPA-PD)2ZnCl2. By taking advantage of the high X-ray absorption of metal halides and fast radioluminescence of AIE molecules, our design of covalently bonded organic metal halide complexes opens up new opportunities for the development of high-performance solution-processable scintillators.

2.
Adv Mater ; 35(23): e2301612, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988220

RESUMO

Scintillators, one of the essential components in medical imaging and security checking devices, rely heavily on rare-earth-containing inorganic materials. Here, a new type of organic-inorganic hybrid scintillators containing earth abundant elements that can be prepared via low-temperature processes is reported. With room temperature co-crystallization of an aggregation-induced emission (AIE) organic halide, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyrindin-1ium bromide (TPA-PBr), and a metal halide, zinc bromide (ZnBr2 ), a zero-dimensional (0D) organic metal halide hybrid (TPA-P)2 ZnBr4 with a yellowish-green emission peaked at 550 nm has been developed. In this hybrid material, dramatically enhanced X-ray scintillation of TPA-P+ is achieved via the sensitization by ZnBr4 2- . The absolute light yield (14,700 ± 800 Photons/MeV) of (TPA-P)2 ZnBr4 is found to be higher than that of anthracene (≈13,500 Photons/MeV), a well-known organic scintillator, while its X-ray absorption is comparable to those of inorganic scintillators. With TPA-P+ as an emitting center, short photoluminescence and radioluminescence decay lifetimes of 3.56 and 9.96 ns have been achieved. Taking the advantages of high X-ray absorption of metal halides and efficient radioluminescence with short decay lifetimes of organic cations, the material design paves a new pathway to address the issues of low X-ray absorption of organic scintillators and long decay lifetimes of inorganic scintillators simultaneously.

3.
Adv Mater ; 35(9): e2209417, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524448

RESUMO

Zero-dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near-unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9-phenyl-9H-carbazol-3-yl) phosphonium antimony bromide (TPPcarzSbBr4 ), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+ ) and light emitting antimony bromide anions (Sb2 Br8 2- ), is reported. By replacing one of the phenyl groups in a well-known tetraphenylphosphonium cation (TPP+ ) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+ cation is developed for the preparation of red emitting 0D TPPcarzSbBr4 single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4 thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m-2 , and a current efficiency of 14.2 cd A-1 , which are the best values reported to date for electroluminescence devices based on 0D OMHHs.

4.
Phys Med ; 103: 127-137, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36302279

RESUMO

FLASH radiation therapy is a novel technique combining ultra-high dose rates (UHDR) with very short treatment times to strongly decrease normal tissue toxicity while preserving the anti-tumoral effect. However, the radiobiological mechanisms and exact conditions for obtaining the FLASH-effect are still under investigation. There are strong indications that parameters defining the beam structure, such as dose per pulse, instantaneous dose rate and pulse repetition frequency (PRF) are of importance. UHDR irradiations therefore come with dosimetric challenges, including both dose assessment and temporal ones. In this work, a first characterization of 6 real-time point scintillating dosimeters with 5 phosphors (Al2O3:C,Mg; Y2O3:Eu; Al2O3:C; (C38H34P2)MnBr4 and (C38H34P2)MnCl4, was performed in an UHDR pulsed electron beam. The dose rate independence of the calibration was tested by calibrating the detector at conventional and UHDR. Dose rate dependence was observed, however, further investigation, including intermediate dose rates, is needed. Linearity of the response with dose was tested by varying the number of pulses and a linearity with R2> 0.9989 was observed up to at least 200 Gy. Dose per pulse linearity was investigated by variation of the pulse length and SSD. All point scintillators showed saturation effects up to some extent and the instantaneous dose rate dependence was confirmed. A PRF dependence was observed for the Al2O3:C,Mg and Al2O3:C- based point scintillators. This was expected as the luminescence decay time of these materials exceeds the inter-pulse time.


Assuntos
Elétrons , Radiometria , Dosímetros de Radiação , Calibragem , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...