Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 101: 105028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422982

RESUMO

BACKGROUND: Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS: By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS: Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION: Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING: This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.


Assuntos
Células T de Memória , Receptores de Antígenos de Linfócitos T , Humanos , Íleo , Aloenxertos , Memória Imunológica , Linfócitos T CD8-Positivos
2.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630757

RESUMO

In humans receiving intestinal transplantation (ITx), long-term multilineage blood chimerism often develops. Donor T cell macrochimerism (≥4%) frequently occurs without graft-versus-host disease (GVHD) and is associated with reduced rejection. Here we demonstrate that patients with macrochimerism had high graft-versus-host (GvH) to host-versus-graft (HvG) T cell clonal ratios in their allografts. These GvH clones entered the circulation, where their peak levels were associated with declines in HvG clones early after transplant, suggesting that GvH reactions may contribute to chimerism and control HvG responses without causing GVHD. Consistently, donor-derived T cells, including GvH clones, and CD34+ hematopoietic stem and progenitor cells (HSPCs) were simultaneously detected in the recipients' BM more than 100 days after transplant. Individual GvH clones appeared in ileal mucosa or PBMCs before detection in recipient BM, consistent with an intestinal mucosal origin, where donor GvH-reactive T cells expanded early upon entry of recipient APCs into the graft. These results, combined with cytotoxic single-cell transcriptional profiles of donor T cells in recipient BM, suggest that tissue-resident GvH-reactive donor T cells migrated into the recipient circulation and BM, where they destroyed recipient hematopoietic cells through cytolytic effector functions and promoted engraftment of graft-derived HSPCs that maintain chimerism. These mechanisms suggest an approach to achieving intestinal allograft tolerance.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Intestinos/transplante , Linfopoese/imunologia , Transplante de Órgãos , Linfócitos T/imunologia , Quimeras de Transplante/imunologia , Aloenxertos , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Intestinos/imunologia , Intestinos/patologia , Masculino , Linfócitos T/patologia
3.
Am J Transplant ; 20(2): 538-545, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31509321

RESUMO

We recently developed a high throughput T cell receptor ß chain (TCRß) sequencing-based approach to identifying and tracking donor-reactive T cells. To address the role of clonal deletion in liver allograft tolerance, we applied this method in samples from a recent randomized study, ITN030ST, in which immunosuppression withdrawal was attempted within 2 years of liver transplantation. We identified donor-reactive T cell clones via TCRß sequencing following a pre-transplant mixed lymphocyte reaction and tracked these clones in the circulation following transplantation in 3 tolerant and 5 non-tolerant subjects. All subjects showed a downward trend and significant reductions in donor-reactive TCRß sequences were detected post-transplant in 6 of 8 subjects, including 2 tolerant and 4 non-tolerant recipients. Reductions in donor-reactive TCRß sequences were greater than those of all other TCRß sequences, including 3rd party-reactive sequences, in all 8 subjects, demonstrating an impact of the liver allograft after accounting for repertoire turnover. Although limited by patient number and heterogeneity, our results suggest that partial deletion of donor-reactive T cell clones may be a consequence of liver transplantation and does not correlate with success or failure of early immunosuppression withdrawal. These observations underscore the organ- and/or protocol-specific nature of tolerance mechanisms in humans.


Assuntos
Deleção Clonal/fisiologia , Terapia de Imunossupressão , Linfócitos T/imunologia , Linfócitos T/fisiologia , Humanos , Transplante de Fígado/efeitos adversos , Doadores de Tecidos , Tolerância ao Transplante/fisiologia
4.
Am J Transplant ; 20(1): 88-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319439

RESUMO

Siplizumab, a humanized anti-CD2 monoclonal antibody, has been used in conditioning regimens for hematopoietic cell transplantation and tolerance induction with combined kidney-bone marrow transplantation. Siplizumab-based tolerance induction regimens deplete T cells globally while enriching regulatory T cells (Tregs) early posttransplantation. Siplizumab inhibits allogeneic mixed-lymphocyte reactions (MLRs) in vitro. We compared the impact of siplizumab on Tregs versus other T cell subsets in HLA-mismatched allogeneic MLRs using PBMCs. Siplizumab predominantly reduced the percentage of CD4+ and CD8+ effector memory T cells, which express higher CD2 levels than naïve T cells or resting Tregs. Conversely, siplizumab enriched proliferating CD45RA- FoxP3HI cells in MLRs. FoxP3 expression was stable over time in siplizumab-containing cultures, consistent with enrichment for bona fide Tregs. Consistently, high-throughput TCRß CDR3 sequencing of sorted unstimulated and proliferating T cells in MLRs revealed selective expansion of donor-reactive Tregs along with depletion of donor-reactive CD4+ effector/memory T cells in siplizumab-containing MLRs. These results indicate that siplizumab may have immunomodulatory functions that may contribute to its success in tolerance-inducing regimens. Our studies also confirm that naïve in addition to effector/memory T cells contribute to the allogeneic MLR and mandate further investigation of the impact of siplizumab on alloreactive naïve T cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Tolerância Imunológica/imunologia , Memória Imunológica/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Teste de Cultura Mista de Linfócitos , Subpopulações de Linfócitos T/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos
5.
Cell Stem Cell ; 24(2): 227-239.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30503142

RESUMO

Human intestinal transplantation often results in long-term mixed chimerism of donor and recipient blood in transplant patients. We followed the phenotypes of chimeric peripheral blood cells in 21 patients receiving intestinal allografts over 5 years. Donor lymphocyte phenotypes suggested a contribution of hematopoietic stem and progenitor cells (HSPCs) from the graft. Surprisingly, we detected donor-derived HSPCs in intestinal mucosa, Peyer's patches, mesenteric lymph nodes, and liver. Human gut HSPCs are phenotypically similar to bone marrow HSPCs and have multilineage differentiation potential in vitro and in vivo. Analysis of circulating post-transplant donor T cells suggests that they undergo selection in recipient lymphoid organs to acquire immune tolerance. Our longitudinal study of human HSPCs carried in intestinal allografts demonstrates their turnover kinetics and gradual replacement of donor-derived HSPCs from a circulating pool. Thus, we have demonstrated the existence of functioning HSPCs in human intestines with implications for promoting tolerance in transplant recipients.


Assuntos
Movimento Celular , Células-Tronco Hematopoéticas/citologia , Intestinos/citologia , Intestinos/transplante , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Quimerismo , Doença Enxerto-Hospedeiro/imunologia , Humanos , Tolerância Imunológica , Mucosa Intestinal/citologia , Fígado/citologia , Linfonodos/citologia , Camundongos , Nódulos Linfáticos Agregados/citologia , Fenótipo , Linfócitos T/citologia , Doadores de Tecidos , Transplante Homólogo
6.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429370

RESUMO

Allograft tolerance, in which a graft is accepted without long-term immunosuppression, could overcome numerous obstacles in transplantation. Human allograft tolerance has been intentionally induced across HLA barriers via combined kidney and bone marrow transplantation (CKBMT) with a regimen that induces only transient chimerism. Tregs are enriched early after CKBMT. While deletional tolerance contributes to long-term tolerance, the role of Tregs remains unclear. We have optimized a method for identifying the donor-specific Treg repertoire and used it to interrogate the fate of donor-specific Tregs after CKBMT. We expanded Tregs with several different protocols. Using functional analyses and T cell receptor sequencing, we found that expanding sorted Tregs with activated donor B cells identified the broadest Treg repertoire with the greatest potency and donor specificity of suppression. This method outperformed both alloantigen stimulation with CTLA4Ig and sequencing of CFSElo cells from the primary mixed lymphocyte reaction. In 3 tolerant and 1 nontolerant CKBMT recipients, we sequenced donor-specific Tregs before transplant and tracked them after transplant. Preexisting donor-specific Tregs were expanded at 6 months after CKBMT in tolerant patients and were reduced in the nontolerant patient. These results suggest that early expansion of donor-specific Tregs is involved in tolerance induction following CKBMT.


Assuntos
Transplante de Rim , Linfócitos T Reguladores/transplante , Tolerância ao Transplante , Linfócitos B/imunologia , Linfócitos B/transplante , Transplante de Medula Óssea , Contagem de Linfócito CD4 , Antígeno CTLA-4/imunologia , Humanos , Teste de Cultura Mista de Linfócitos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Doadores de Tecidos
7.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089728

RESUMO

Alloreactive T lymphocytes are the primary mediators of immune responses in transplantation, both in the graft-versus-host and host-versus-graft directions. While essentially all clones comprising the human T cell repertoire have been selected on self-peptide presented by self-human leukocyte antigens (self-HLAs), much remains to be understood about the nature of clones capable of responding to allo-HLA molecules. Quantitative tools to study these cells are critical to understand fundamental features of this important response; however, the large size and diversity of the alloreactive T cell repertoire in humans presents a great technical challenge. We have developed a high-throughput T cell receptor (TCR) sequencing approach to characterize the human alloresponse. We present a statistical method to model T cell clonal frequency distribution and quantify repertoire diversity. Using these approaches, we measured the diversity and frequency of distinct alloreactive CD4+ and CD8+ T cell populations in HLA-mismatched responder-stimulator pairs. Our findings indicate that the alloimmune repertoire is highly specific for a given pair of individuals, that most alloreactive clones circulate at low frequencies, and that a high proportion of TCRs is likely able to recognize alloantigens.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Antígenos HLA/imunologia , Isoantígenos/imunologia , Linfócitos T/imunologia , Adulto , Transplante de Medula Óssea/efeitos adversos , Simulação por Computador , Voluntários Saudáveis , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Transplante de Rim/efeitos adversos , Modelos Biológicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Transplante Homólogo/efeitos adversos
8.
Transplantation ; 101(10): 2449-2454, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27941430

RESUMO

BACKGROUND: Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. METHODS: Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. RESULTS: Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. CONCLUSIONS: Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.


Assuntos
Imunidade Inata , Mucosa Intestinal/patologia , Intestinos/transplante , Linfócitos/patologia , Tecido Linfoide/patologia , Transplante de Órgãos , Adolescente , Adulto , Biópsia , Células Cultivadas , Pré-Escolar , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Mucosa Intestinal/imunologia , Intestinos/imunologia , Intestinos/patologia , Linfócitos/imunologia , Tecido Linfoide/imunologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Doadores de Tecidos , Quimeras de Transplante
9.
Sci Immunol ; 1(4)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28239678

RESUMO

A paradigm in transplantation states that graft-infiltrating T cells are largely non-alloreactive "bystander" cells. However, the origin and specificity of allograft T cells over time has not been investigated in detail in animals or humans. Here, we use polychromatic flow cytometry and high throughput TCR sequencing of serial biopsies to show that gut-resident T cell turnover kinetics in human intestinal allografts are correlated with the balance between intra-graft host-vs-graft (HvG) and graft-vs-host (GvH) reactivities and with clinical outcomes. In the absence of rejection, donor T cells were enriched for GvH-reactive clones that persisted long-term in the graft. Early expansion of GvH clones in the graft correlated with rapid replacement of donor APCs by the recipient. Rejection was associated with transient infiltration by blood-like recipient CD28+ NKG2DHi CD8+ alpha beta T cells, marked predominance of HvG clones, and accelerated T cell turnover in the graft. Ultimately, these recipient T cells acquired a steady state tissue-resident phenotype, but regained CD28 expression during rejections. Increased ratios of GvH to HvG clones were seen in non-rejectors, potentially mitigating the constant threat of rejection posed by HvG clones persisting within the tissue-resident graft T cell population.

10.
Sci Transl Med ; 7(272): 272ra10, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632034

RESUMO

T cell responses to allogeneic major histocompatibility complex antigens present a formidable barrier to organ transplantation, necessitating long-term immunosuppression to minimize rejection. Chronic rejection and drug-induced morbidities are major limitations that could be overcome by allograft tolerance induction. Tolerance was first intentionally induced in humans via combined kidney and bone marrow transplantation (CKBMT), but the mechanisms of tolerance in these patients are incompletely understood. We now establish an assay to identify donor-reactive T cells and test the role of deletion in tolerance after CKBMT. Using high-throughput sequencing of the T cell receptor B chain CDR3 region, we define a fingerprint of the donor-reactive T cell repertoire before transplantation and track those clones after transplant. We observed posttransplant reductions in donor-reactive T cell clones in three tolerant CKBMT patients; such reductions were not observed in a fourth, nontolerant, CKBMT patient or in two conventional kidney transplant recipients on standard immunosuppressive regimens. T cell repertoire turnover due to lymphocyte-depleting conditioning only partially accounted for the observed reductions in tolerant patients; in fact, conventional transplant recipients showed expansion of circulating donor-reactive clones, despite extensive repertoire turnover. Moreover, loss of donor-reactive T cell clones more closely associated with tolerance induction than in vitro functional assays. Our analysis supports clonal deletion as a mechanism of allograft tolerance in CKBMT patients. The results validate the contribution of donor-reactive T cell clones identified before transplant by our method, supporting further exploration as a potential biomarker of transplant outcomes.


Assuntos
Deleção Clonal , Falência Renal Crônica/imunologia , Transplante de Rim , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/citologia , Tolerância ao Transplante , Aloenxertos , Transplante de Medula Óssea , Regiões Determinantes de Complementaridade/metabolismo , Rejeição de Enxerto , Humanos , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Falência Renal Crônica/cirurgia , Teste de Cultura Mista de Linfócitos , Complexo Principal de Histocompatibilidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...