Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6621, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857617

RESUMO

Efficiently balancing photochemistry and photoprotection is crucial for survival and productivity of photosynthetic organisms in the rapidly fluctuating light levels found in natural environments. The ability to respond quickly to sudden changes in light level is clearly advantageous. In the alga Nannochloropsis oceanica we observed an ability to respond rapidly to sudden increases in light level which occur soon after a previous high-light exposure. This ability implies a kind of memory. In this work, we explore the xanthophyll cycle in N. oceanica as a short-term photoprotective memory system. By combining snapshot fluorescence lifetime measurements with a biochemistry-based quantitative model, we show that short-term memory arises from the xanthophyll cycle. In addition, the model enables us to characterize the relative quenching abilities of the three xanthophyll cycle components. Given the ubiquity of the xanthophyll cycle in photosynthetic organisms the model described here will be of utility in improving our understanding of vascular plant and algal photoprotection with important implications for crop productivity.


Assuntos
Estramenópilas , Xantofilas , Xantofilas/metabolismo , Fotossíntese , Fotoquímica , Plantas/metabolismo , Luz
2.
J Chem Phys ; 156(20): 205102, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649869

RESUMO

We explore the photoprotection dynamics of Nannochloropsis oceanica using time-correlated single photon counting under regular and irregular actinic light sequences. The varying light sequences mimic natural conditions, allowing us to probe the real-time response of non-photochemical quenching (NPQ) pathways. Durations of fluctuating light exposure during a fixed total experimental time and prior light exposure of the algae are both found to have a profound effect on NPQ. These observations are rationalized with a quantitative model based on the xanthophyll cycle and the protonation of LHCX1. The model is able to accurately describe the dynamics of non-photochemical quenching across a variety of light sequences. The combined model and observations suggest that the accumulation of a quenching complex, likely zeaxanthin bound to a protonated LHCX1, is responsible for the gradual rise in NPQ. Additionally, the model makes specific predictions for the light sequence dependence of xanthophyll concentrations that are in reasonable agreement with independent chromatography measurements taken during a specific light/dark sequence.


Assuntos
Xantofilas , Xantofilas/metabolismo , Zeaxantinas
3.
Plant Cell Environ ; 45(8): 2428-2445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678230

RESUMO

Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Choque Térmico/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo
4.
RSC Adv ; 11(31): 18757-18767, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478622

RESUMO

NADPH and NADH are well known for their role in antioxidant defense and energy metabolism, respectively, however distinguishing their cellular autofluorescence signals is a challenge due to their nearly identical optical properties. Recent studies applying spectral phasor analysis to autofluorescence emission during chemically induced metabolic responses showed that two-component spectral behavior, i.e., spectral change acting as a superposition of two spectra, depended on whether one or multiple metabolic pathways were affected. Here, we use this property of spectral behavior to show that metabolic responses primarily involving NADPH or NADH can be distinguished. We start by observing that the cyanide-induced response at micro- and millimolar concentrations does not follow mutual two-component spectral behavior, suggesting their response mechanisms differ. While respiratory inhibition at millimolar cyanide concentration is well known and associated with the NADH pool, we find the autofluorescence response at micromolar cyanide concentration exhibits two-component spectral behavior with NADPH-linked EGCG- and peroxide-induced responses, suggesting an association with the NADPH pool. What emerges is a spectral phasor map useful for distinguishing cellular autofluorescence responses related to oxidative stress versus cellular respiration.

5.
J Phys Chem B ; 124(46): 10311-10325, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33166148

RESUMO

Protection of photosystem II against damage from excess light by nonphotochemical quenching (NPQ) includes responses on a wide range of timescales. The onset of the various phases of NPQ overlap in time making it difficult to discern if they influence each other or involve different photophysical mechanisms. To unravel the complex relationship of the known actors in NPQ, we perform fluorescence lifetime snapshot measurements throughout multiple cycles of alternating 2 min periods of high light and darkness. By comparing the data with an empirically based mathematical model that describes both fast and slow quenching responses, we suggest that the rapidly reversible quenching response depends on the state of the slower response. By studying a series of Arabidopsis thaliana mutants, we find that removing zeaxanthin (Zea) or enhancing PsbS concentration, for example, influences the amplitudes of the slow quenching induction and recovery, but not the timescales. The plants' immediate response to high light appears independent of the illumination history, while PsbS and Zea have distinct roles in both quenching and recovery. We further identify two parameters in our model that predominately influence the recovery amplitude and propose that our approach may prove useful for screening new mutants or overexpressors with enhanced biomass yields under field conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Xantofilas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/metabolismo , Zeaxantinas
6.
BMJ Open Diabetes Res Care ; 7(1): e000793, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31908796

RESUMO

Objectives: To determine if spatial variations in gut permeability play a role in regulating type 1 diabetes (T1D) progression. Research design and methods: Spatially resolved duodenum, jejunum, ileum, and large intestine sections from end-stage T1D non-obese diabetic (NOD) mice were probed by immunohistochemistry to quantify zonulin levels as a measure of gut permeability in early-progressor and late-progressor NOD mice in comparison with non-progressor NOD mice and healthy NOR/LtJ control mice. Results: Zonulin levels were elevated in the small and large intestines in early-progressor and late-progressor NOD mice in comparison with non-progressor NOD mice and healthy NOR control mice. In early-onset mice, elevated zonulin levels were maximum in the duodenum and jejunum and decreased in the ileum and large intestine. In late-progressor mice, zonulin levels were elevated almost evenly along the small and large intestines. In non-progressor NOD mice, zonulin levels were comparable with NOR control levels in both the small and large intestines. Conclusions: Elevated zonulin expression levels indicated that gut permeability was increased both in the small and large intestines in NOD mice that progressed to end-stage T1D in comparison with non-progressor NOD mice and healthy NOR control mice. Highest elevations in zonulin levels were observed in the duodenum and jejunum followed by the ileum and large intestines. Spatial variations in gut permeability appeared to play a role in regulating the rate and severity of T1D progression in NOD mice indicating that spatial variations in gut permeability should be investigated as a potentially important factor in human T1D progression.


Assuntos
Permeabilidade da Membrana Celular , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Trato Gastrointestinal/patologia , Haptoglobinas/metabolismo , Precursores de Proteínas/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...