Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinform Adv ; 4(1): vbae067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808072

RESUMO

Summary: The collection and analysis of sensitive data in large-scale consortia for statistical genetics is hampered by multiple challenges, due to their non-shareable nature. Time-consuming issues in installing software frequently arise due to different operating systems, software dependencies, and limited internet access. For federated analysis across sites, it can be challenging to resolve different problems, including format requirements, data wrangling, setting up analysis on high-performance computing (HPC) facilities, etc. Easier, more standardized, automated protocols and pipelines can be solutions to overcome these issues. We have developed one such solution for statistical genetic data analysis using software container technologies. This solution, named COSGAP: "COntainerized Statistical Genetics Analysis Pipelines," consists of already established software tools placed into Singularity containers, alongside corresponding code and instructions on how to perform statistical genetic analyses, such as genome-wide association studies, polygenic scoring, LD score regression, Gaussian Mixture Models, and gene-set analysis. Using provided helper scripts written in Python, users can obtain auto-generated scripts to conduct the desired analysis either on HPC facilities or on a personal computer. COSGAP is actively being applied by users from different countries and projects to conduct genetic data analyses without spending much effort on software installation, converting data formats, and other technical requirements. Availability and implementation: COSGAP is freely available on GitHub (https://github.com/comorment/containers) under the GPLv3 license.

2.
medRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464139

RESUMO

Mental disorders (MDs) are leading causes of disability and premature death worldwide, partly due to high comorbidity with cardiometabolic disorders (CMDs). Reasons for this comorbidity are still poorly understood. We leverage nation-wide health records and complete genealogies of Denmark and Sweden (n=17 million) to reveal the genetic and environmental contributions underlying the observed comorbidity between six MDs and 14 CMDs. Genetic factors contributed about 50% to the comorbidity of schizophrenia, affective disorders, and autism spectrum disorder with CMDs, whereas the comorbidity of attention-deficit/hyperactivity disorder and anorexia with CMDs was mainly or fully driven by environmental factors. These findings provide causal insight to guide clinical and scientific initiatives directed at achieving mechanistic understanding as well as preventing and alleviating the consequences of these disorders.

3.
medRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37886536

RESUMO

Recurrent copy number variants (rCNVs) are associated with increased risk of neuropsychiatric disorders but their pathogenic population-level impact is unknown. We provide population-based estimates of rCNV-associated risk of neuropsychiatric disorders for 34 rCNVs in the iPSYCH2015 case-cohort sample (n=120,247). Most observed significant increases in rCNV-associated risk for ADHD, autism or schizophrenia were moderate (HR:1.42-5.00), and risk estimates were highly correlated across these disorders, the most notable exception being high autism-associated risk with Prader-Willi/Angelman Syndrome duplications (HR=20.8). No rCNV was associated with significant increase in depression risk. Also, rCNV-associated risk was positively correlated with locus size and gene constraint. Comparison with published rCNV studies suggests that prevalence of some rCNVs is higher, and risk of psychiatric disorders lower, than previously estimated. In an era where genetics is increasingly being clinically applied, our results highlight the importance of population-based risk estimates for genetics-based predictions.

4.
Lancet Reg Health Eur ; 29: 100621, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37265784

RESUMO

Background: Major depressive disorder (MDD) is a common psychiatric disorder associated with a high disease burden. This study gives a comprehensive overview of the prevalence, outcomes, treatment, and genetic epidemiology of MDD within and across the Scandinavian countries. Methods: This study has aimed to assess and compare across Norway, Denmark, and Sweden 1) the prevalence and trajectories of MDD and comorbidity, 2) outcomes and treatment, and 3) heritability (Denmark and Sweden only). The analyses leveraged data on 272,944 MDD cases (and 6.2 million non-cases) from Norway, Sweden, and Denmark in specialist care in national longitudinal health registers covering 1975-2013. Relying on harmonized public data global comparisons of socioeconomic and health metrics were performed to assess to what extent findings are generalizable. Findings: MDD ranked among the most prevalent psychiatric disorders. For many cases, the disorder trajectory was severe, with varying proportions experiencing recurrence, developing comorbid disorders, requiring inpatient treatment, or dying of suicide. Important country differences in specialist care prevalence and treatment were observed. Heritability estimates were moderate (35-48%). In terms of socioeconomic and health indices, the Scandinavian nations were comparable to one another and grouped with other Western nations. Interpretation: The Scandinavian countries were similar with regards to MDD epidemiological measures, but we show that differences in health care organization need to be taken into consideration when comparing countries. This study demonstrates the utility of using comprehensive population-wide registry data, outlining possibilities for other applications. The findings will be of use to policy makers for developing better prevention and intervention strategies. Funding: Swedish Research Council (Vetenskapsrådet, award D0886501 to PFS), US National Institutes of Mental HealthR01 MH123724 (to PFS), European Union's Horizon 2020 Research and Innovation Program (847776 and 964874, to OA) and European Research Council grant (grant agreement ID 101042183, to YL).

5.
Biol Psychiatry ; 92(4): 283-290, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305821

RESUMO

BACKGROUND: Several recent studies have suggested a role for infections in the development of mental disorders; however, the genetic contribution to this association is understudied. METHODS: We use the iPSYCH case-cohort genotyped sample (n = 65,534) and Danish health care registry data to study the genetic association between infections and mental disorders. To test the hypothesis that these associations are due to genetic pleiotropy, we estimated the genetic correlation between infection and mental disorders. Polygenic risk scores (PRSs) were used to assess whether genetic pleiotropy of infections and mental disorders was mediated by actual infection diagnoses. RESULTS: We observed that schizophrenia, attention-deficit/hyperactivity disorder, major depressive disorder, bipolar disorder, and posttraumatic stress disorder (rg ranging between 0.18 and 0.83), but not autism spectrum disorder and anorexia nervosa, were significantly genetically correlated with infection diagnoses. PRSs for infections were associated with modest increase in risk of attention-deficit/hyperactivity disorder, major depressive disorder, and schizophrenia in the iPSYCH case-cohort (hazard ratios = 1.04 to 1.10) but was not associated with risk of anorexia, autism, or bipolar disorder. Using mediation analysis, we show that infection diagnoses account for only a small proportion (6%-14%) of the risk for mental disorders conferred by infection PRSs. CONCLUSIONS: Infections and mental disorders share a modest genetic architecture. Infection PRSs can predict risk of certain mental disorders; however, this effect is moderate. Finally, recorded infections partially explain the relationship between infection PRSs and mental disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Esquizofrenia , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética , Herança Multifatorial/genética , Fatores de Risco , Esquizofrenia/epidemiologia , Esquizofrenia/genética
6.
Epilepsia ; 61(9): 2010-2021, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32852103

RESUMO

OBJECTIVE: Animal studies remain essential for understanding mechanisms of epilepsy and identifying new therapeutic targets. However, existing animal models of epilepsy do not reflect the high level of genetic diversity found in the human population. The Collaborative Cross (CC) population is a genetically diverse recombinant inbred panel of mice. The CC offers large genotypic and phenotypic diversity, inbred strains with stable genomes that allow for repeated phenotypic measurements, and genomic tools including whole genome sequence to identify candidate genes and candidate variants. METHODS: We evaluated multiple complex epileptic traits in a sampling of 35 CC inbred strains using the flurothyl-induced seizure and kindling paradigm. We created an F2 population of 297 mice with extreme seizure susceptibility and performed quantitative trait loci (QTL) mapping to identify genomic regions associated with seizure sensitivity. We used quantitative RNA sequencing from CC hippocampal tissue to identify candidate genes and whole genome sequence to identify genetic variants likely affecting gene expression. RESULTS: We identified new mouse models with extreme seizure susceptibility, seizure propagation, epileptogenesis, and SUDEP (sudden unexpected death in epilepsy). We performed QTL mapping and identified one known and seven novel loci associated with seizure sensitivity. We combined whole genome sequencing and hippocampal gene expression to pinpoint biologically plausible candidate genes (eg, Gabra2) and variants associated with seizure sensitivity. SIGNIFICANCE: New mouse models of epilepsy are needed to better understand the complex genetic architecture of seizures and to identify therapeutics. We performed a phenotypic screen utilizing a novel genetic reference population of CC mice. The data we provide enable the identification of protective/risk genes and novel molecular mechanisms linked to complex seizure traits that are currently challenging to study and treat.


Assuntos
Camundongos de Cruzamento Colaborativo/genética , Modelos Animais de Doenças , Epilepsia/genética , Hipocampo/metabolismo , Camundongos , Convulsões/genética , Animais , Mapeamento Cromossômico , Convulsivantes , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Agonistas de Aminoácidos Excitatórios , Flurotila , Expressão Gênica , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Ácido Caínico , Camundongos Endogâmicos , Pentilenotetrazol , Fenótipo , Locos de Características Quantitativas , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Morte Súbita Inesperada na Epilepsia , Sequenciamento Completo do Genoma
7.
G3 (Bethesda) ; 9(5): 1613-1622, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30877080

RESUMO

Reproductive success in the eight founder strains of the Collaborative Cross (CC) was measured using a diallel-mating scheme. Over a 48-month period we generated 4,448 litters, and provided 24,782 weaned pups for use in 16 different published experiments. We identified factors that affect the average litter size in a cross by estimating the overall contribution of parent-of-origin, heterosis, inbred, and epistatic effects using a Bayesian zero-truncated overdispersed Poisson mixed model. The phenotypic variance of litter size has a substantial contribution (82%) from unexplained and environmental sources, but no detectable effect of seasonality. Most of the explained variance was due to additive effects (9.2%) and parental sex (maternal vs. paternal strain; 5.8%), with epistasis accounting for 3.4%. Within the parental effects, the effect of the dam's strain explained more than the sire's strain (13.2% vs. 1.8%), and the dam's strain effects account for 74.2% of total variation explained. Dams from strains C57BL/6J and NOD/ShiLtJ increased the expected litter size by a mean of 1.66 and 1.79 pups, whereas dams from strains WSB/EiJ, PWK/PhJ, and CAST/EiJ reduced expected litter size by a mean of 1.51, 0.81, and 0.90 pups. Finally, there was no strong evidence for strain-specific effects on sex ratio distortion. Overall, these results demonstrate that strains vary substantially in their reproductive ability depending on their genetic background, and that litter size is largely determined by dam's strain rather than sire's strain effects, as expected. This analysis adds to our understanding of factors that influence litter size in mammals, and also helps to explain breeding successes and failures in the extinct lines and surviving CC strains.


Assuntos
Alelos , Animais Geneticamente Modificados , Camundongos de Cruzamento Colaborativo/genética , Tamanho da Ninhada de Vivíparos/genética , Herança Materna , Algoritmos , Animais , Cruzamentos Genéticos , Meio Ambiente , Interação Gene-Ambiente , Testes Genéticos , Camundongos , Camundongos Endogâmicos , Modelos Genéticos , Fenótipo , Razão de Masculinidade , Especificidade da Espécie
8.
G3 (Bethesda) ; 9(5): 1303-1311, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30858237

RESUMO

Two key features of recombinant inbred panels are well-characterized genomes and reproducibility. Here we report on the sequenced genomes of six additional Collaborative Cross (CC) strains and on inbreeding progress of 72 CC strains. We have previously reported on the sequences of 69 CC strains that were publicly available, bringing the total of CC strains with whole genome sequence up to 75. The sequencing of these six CC strains updates the efforts toward inbreeding undertaken by the UNC Systems Genetics Core. The timing reflects our competing mandates to release to the public as many CC strains as possible while achieving an acceptable level of inbreeding. The new six strains have a higher than average founder contribution from non-domesticus strains than the previously released CC strains. Five of the six strains also have high residual heterozygosity (>14%), which may be related to non-domesticus founder contributions. Finally, we report on updated estimates on residual heterozygosity across the entire CC population using a novel, simple and cost effective genotyping platform on three mice from each strain. We observe a reduction in residual heterozygosity across all previously released CC strains. We discuss the optimal use of different genetic resources available for the CC population.


Assuntos
Camundongos de Cruzamento Colaborativo/genética , Genética Populacional , Endogamia , Sequenciamento Completo do Genoma , Alelos , Animais , Animais Geneticamente Modificados , Mapeamento Cromossômico , Cruzamentos Genéticos , Frequência do Gene , Genoma , Genótipo , Camundongos , Camundongos Endogâmicos
9.
Mamm Genome ; 30(1-2): 42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30515527

RESUMO

The original article has been published with an incorrect text in Materials and Methods section. The corrected text should read as.

10.
Mamm Genome ; 29(1-2): 80-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29279960

RESUMO

Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12-15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24-25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.


Assuntos
Variação Genética , Coração/anatomia & histologia , Tamanho do Órgão/genética , Locos de Características Quantitativas/genética , Animais , Colesterol/genética , Colesterol/metabolismo , Mapeamento Cromossômico , Dieta/efeitos adversos , Feminino , Genômica , Genótipo , Haplótipos , Masculino , Camundongos , Fenótipo
11.
Genetics ; 206(2): 537-556, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592495

RESUMO

The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources.


Assuntos
Deriva Genética , Genoma/genética , Camundongos Endogâmicos/genética , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Genótipo , Haplótipos , Masculino , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
12.
Genetics ; 206(2): 557-572, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592496

RESUMO

The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.


Assuntos
Cromossomos/genética , Infertilidade Masculina/genética , Camundongos Endogâmicos/genética , Reprodução/genética , Alelos , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Haplótipos , Endogamia , Masculino , Camundongos , Fenótipo , Locos de Características Quantitativas/genética , Motilidade dos Espermatozoides/genética
13.
G3 (Bethesda) ; 6(10): 3335-3342, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27558663

RESUMO

Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps) transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC) composition, including reduction in 5-tricosene (5-T), an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Receptores Odorantes/genética , Comportamento Sexual Animal , Animais , Animais Geneticamente Modificados , Copulação , Proteínas de Drosophila/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Hidrocarbonetos/metabolismo , Masculino , Metabolômica , Desempenho Psicomotor , Interferência de RNA , Receptores Odorantes/metabolismo
14.
PLoS One ; 10(7): e0134612, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226016

RESUMO

Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D. melanogaster reared on standard culture medium supplemented with increasing concentrations of RJ. We found that lower concentrations of RJ do induce significant differences in body size in both sexes; higher concentrations reduce size, increase mortality, shorten lifespan and reduce productivity. Increased concentrations of RJ also consistently lengthened development time in both sexes. RJ is associated with changes in expression of 1,581 probe sets assessed using Affymetrix Drosophila 2.0 microarrays, which were enriched for genes associated with metabolism and amino acid degradation. The transcriptional changes are consistent with alterations in cellular processes to cope with excess nutrients provided by RJ, including biosynthesis and detoxification, which might contribute to accelerated senescence and reduced lifespan.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Ácidos Graxos/farmacologia , Expressão Gênica/efeitos dos fármacos , Hormônios de Inseto/farmacologia , Animais , Tamanho Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Longevidade/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 112(27): E3555-63, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100892

RESUMO

Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics.


Assuntos
Agressão , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insetos/genética , Variação Genética , Animais , Cruzamentos Genéticos , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/classificação , Drosophila melanogaster/fisiologia , Epistasia Genética , Evolução Molecular , Genes de Insetos/fisiologia , Genoma de Inseto/genética , Humanos , Endogamia , Mutação , Interferência de RNA , Especificidade da Espécie
16.
Behav Genet ; 42(4): 663-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22327626

RESUMO

In order to identify genes that are influencing defensive behaviors, we have taken a new approach by dissecting colony-level defensive behavior into individual behavioral measurements using two families containing backcross workers from matings involving European and Africanized bees. We removed the social context from stinging behavior by using a laboratory assay to measure the stinging response of individual bees. A mild shock was given to bees using a constant-current stimulator. The time it took bees to sting in response to this stimulus was recorded. In addition, bees that were seen performing guard behaviors at the hive entrance were collected. We performed QTL mapping in two backcross families with SNP probes within genes and identified two new QTL regions for stinging behavior and another QTL region for guarding behavior. We also identified several candidate genes involved in neural signaling, neural development and muscle development that may be influencing stinging and guarding behaviors. The lack of overlap between these regions and previous defensive behavior QTL underscores the complexity of this behavior and increases our understanding of its genetic architecture.


Assuntos
Abelhas/genética , Comportamento Animal , Mordeduras e Picadas de Insetos/genética , Locos de Características Quantitativas , Tempo de Reação/genética , Animais , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Escore Lod , Polimorfismo de Nucleotídeo Único , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...