Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008654

RESUMO

A method for obtaining composite gas-diffusion PdCu-Nb-PdCu membranes modified with a nanostructured crystalline coating was developed to increase the performance of Nb-based membranes. A modifying functional layer with a controlled size and composition was synthesized by electrochemical deposition, which made it possible to determine a certain geometric shape for palladium nanocrystallites. Developed PdCu-Nb-PdCu membranes have demonstrated flux values up to 0.232 mmol s-1 m-2 in the processes of diffusion purification of hydrogen at 400 °C. A very significant difference in the hydrogen fluxes through the modified and non-modified composite PdCu-Nb-PdCu membranes reached 1.73 times at the lower threshold temperature of 300 °C. Cu doping of protective layer did not affect the selective properties of the membranes, which was confirmed by the obtained high selectivity values up to 1323, and made it possible to reduce the noble metal content. The research data indicate that the modification of the membrane surface significantly accelerates the hydrogen transfer process at sufficiently low temperatures due to the acceleration of dissociative-associative processes on the surface. The reported approach demonstrates new possibilities for creating productive and cost-efficient membranes based on niobium.


Assuntos
Cobre/química , Nanoestruturas/química , Nióbio/química , Paládio/química , Hidrogênio/química , Peróxido de Hidrogênio/química
2.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096829

RESUMO

The method of synthesis of bimetallic Pd-Ag pentagonally structured catalyst "nanostar" on the surface of Pd-23%Ag alloy films has been developed. The resulting catalyst was studied as a highly active functional layer for methanol oxidation reaction (MOR) in alkaline media and the intensification of hydrogen transport through the Pd-23%Ag membrane in the processes of hydrogen diffusion purification. A modifying layer with a controlled size, composition and excellent electrocatalytic activity was synthesized by electrochemical deposition at a reduced current density compared to classical methods. The low deposition rate affects the formation of pentagonally structured nanocrystallites, allowing Pd and Ag particles to form well-defined structures due to the properties of the surfactant used. Electrochemical studies have demonstrated that the catalyst synthesized by the "nanostar" method shows better electrocatalytic activity in relation to MOR and demonstrates a higher peak current (up to 17.82 µA cm-2) in comparison with one for the catalyst synthesized by the "nanoparticle" method (up to 10.66 µA cm-2) in a cyclic voltammetric study. The nanostar catalyst electrode releases the highest current density (0.25 µA cm-2) for MOR and demonstrates higher catalytic activity for the oxidation of possible intermediates such as sodium formate in MOR. In the processes of diffusion membrane purification of hydrogen, a multiple increase in the density of the penetrating flux of hydrogen through the membranes modified by the "nanostar" catalyst (up to 10.6 mmol s-1 m-2) was demonstrated in comparison with the membranes modified by the "nanoparticles" method (up to 4.49 mmol s-1 m-2). Research data may indicate that the properties of the developed pentagonally structured catalyst "nanostar" and its enhanced activity with respect to reactions involving hydrogen increase the desorption activity of the membrane, which ultimately accelerates the overall stepwise transfer of hydrogen across the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...