Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Heliyon ; 10(9): e29778, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694109

RESUMO

Understanding plant-microbe interaction can be useful in identifying the microbial drivers of plant invasions. It is in this context that we explored the diversity of endophytic microbes from leaves of Anthemis cotula, an annual plant that is highly invasive in Kashmir Himalaya. We also tried to establish the role of endophytes in the invasiveness of this alien species. We collected and processed leaf samples from three populations at three different sites. A total of 902 endophytic isolates belonging to 4 bacterial and 2 fungal phyla were recovered that belonged to 27 bacterial and 14 fungal genera. Firmicutes (29.1%), Proteobacteria (24.1%), Ascomycota (22.8%) and Actinobacteria (19%) were dominant across all samples. Plant growth promoting traits, such as Ammonia production, Indole Acetic Acid (IAA) production, Phosphate solubilization and biocontrol activity of these endophytes were also studied and most of the isolates (74.68%) were positive for ammonia production. IAA production, phosphate solubilization and biocontrol activity was present in 39.24%, 36.70% and 20.26% isolates, respectively. Furthermore, Botrytis cinerea, a pathogen of A. cotula in its native range, though present in Kashmir Himalaya does not affect A. cotula probably due to the presence of leaf endophytic microbial antagonists. Our results highlight that the beneficial plant growth promoting interactions and enemy suppression by leaf endophytes of A. cotula, may be contributing to its survival and invasion in the Kashmir Himalaya.

2.
Int J Antimicrob Agents ; 63(3): 107091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242249

RESUMO

The specialised small molecules encoded by commensal microbes mediate distinct functional interactions. However, there is a landscape of antagonistic interactions mediated by specialised strains and their small molecules. Herein, the antagonistic landscape within a collection of 330 human gut-derived commensal microbial strains was elucidated to evaluate antimicrobial interactions as a defensive contributor, and gain new insights into structure-related functions. The potential antagonistic gut-derived strains displayed strain-specific selective inhibition. This is in contrast to common antimicrobial drugs, which typically wipe out a broad range of species and are usually found in environmental microbes. Genome sequencing of representative gut strains revealed the presence of significant biosynthetic gene clusters (BGCs) encoding compound families that contribute to antagonistic activities, and are important in host defence and maintaining gut homeostasis. Subsets of these BGCs were abundant in metagenomic sequencing data from healthy individuals. Furthermore, the cell culture secretome of these strains revealed potential biomarkers linked to hallmark pathways. These microorganisms have biosynthetic novelty and are a source of biologically significant natural products. Such natural products are essential in the development of new antimicrobial agents to reduce the usage of broad-spectrum antibiotics and combat antimicrobial resistance.


Assuntos
Antibacterianos , Produtos Biológicos , Humanos , Homeostase , Antibacterianos/farmacologia , Mapeamento Cromossômico , Metagenoma
3.
Microbiol Resour Announc ; 13(2): e0113423, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38270452

RESUMO

We report a preliminary study of soil from the Central Deccan Plateau dry tropical deciduous forest in India using 16S rRNA gene amplicon sequencing. We report diverse taxa, e.g., Proteobacteria, Actinobacteria, Acidobacteria, Plactomycetes, Chloroflexi, Bacteroidetes, Verrucomicrobia, Gemmatimonadetes, Firmicutes, Crenarchaeota, Nitrospirae, Armatimonadetes, Elusimicrobia, Cyanobacteria, Chlamydiae, Chlorobi, Parvachaeota, Tenericutes, Euryarchaeota, Fibrobacteres, Calditrix, and Spirochaetes.

4.
Arch Microbiol ; 205(12): 366, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917352

RESUMO

The PVC superphylum is a diverse group of prokaryotes that require stringent growth conditions. RNA is a fascinating molecule to find evolutionary relatedness according to the RNA World Hypothesis. We conducted tRNA gene analysis to find evolutionary relationships in the PVC phyla. The analysis of genomic data (P = 9, V = 4, C = 8) revealed that the number of tRNA genes varied from 28 to 90 in Planctomycetes and Chlamydia, respectively. Verrucomicrobia has whole genomes and the longest scaffold (3 + 1), with tRNA genes ranging from 49 to 53 in whole genomes and 4 in the longest scaffold. Most tRNAs in the E. coli genome clustered with homologs, but approximately 43% clustered with tRNAs encoding different amino acids. Planctomyces, Akkermansia, Isosphaera, and Chlamydia were similar to E. coli tRNAs. In a phylum, tRNAs coding for different amino acids clustered at a range of 8 to 10%. Further analysis of these tRNAs showed sequence similarity with Cyanobacteria, Proteobacteria, Viridiplantae, Ascomycota and Basidiomycota (Eukaryota). This indicates the possibility of horizontal gene transfer or, otherwise, a different origin of tRNA in PVC bacteria. Hence, this work proves its importance for determining evolutionary relatedness and potentially identifying bacteria using tRNA. Thus, the analysis of these tRNAs indicates that primitive RNA may have served as the genetic material of LUCA before being replaced by DNA. A quantitative analysis is required to test these possibilities that relate the evolutionary significance of tRNA to the origin of life.


Assuntos
Escherichia coli , RNA de Transferência , Escherichia coli/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Verrucomicrobia/genética , Aminoácidos/metabolismo , Planctomicetos , Evolução Molecular
5.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37935462

RESUMO

The aim of this study was to check the effect of long-term oral glutathione (GSH) supplementation on alteration in gut microbiome of Indian diabetic individuals. Early morning fresh stool sample of diabetic individuals recruited in a randomized clinical trial wherein they were given 500 mg GSH supplementation orally once a day for a period of 6 months was collected and gut microbiome was analysed using high throughput 16S rRNA metagenomic sequencing. Long-term GSH supplementation as reported in our earlier work showed significant increase in body stores of GSH and stabilized decreased glycated haemoglobin (HbA1c). Analysis of gut microbiome revealed that abundance of phylum Proteobacteria significantly decreased (P < 0.05) in individuals with GSH supplementation after 6 months compared to those without it. Beneficial dominant genera such as Megasphaera, Bacteroides, and Megamonas were found to be significantly enriched (P < 0.05), while pathogenic Escherichia/Shigella was found to be depleted (P < 0.05) after supplementation. Data clearly demonstrate that GSH supplementation along with antidiabetic treatment helps restore the gut microbiome by enriching beneficial bacteria of healthy gut and reducing significantly the load of pathogenic bacteria of diabetic gut.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Glutationa , Diabetes Mellitus Tipo 2/tratamento farmacológico , Suplementos Nutricionais
6.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-37309172

RESUMO

Celiac disease (CeD) is an immune-mediated chronic disorder triggered by the ingestion of wheat gluten in genetically predisposed individuals. Gluten is a major food ingredient, infamously containing proline and glutamine-rich domains that are highly resistant to digestion by mammalian proteolytic enzymes. Thus, adhering to a gluten-free diet (GFD) is the only known treatment for CeD, albeit with many complications. Therefore, any therapy that eliminates the gluten immunogenic part before it reaches the small intestine is highly desirable. Probiotic therapy containing gluten-degrading bacteria (GDB) and their protease enzymes are possibly new approaches to treating CeD. Our study aimed to identify novel GDB from the duodenal biopsy of the first-degree relative (FDR) subjects (relatives of diseased individuals who are healthy but susceptible to celiac disease) with the potential to reduce gluten immunogenicity. Using the gluten agar plate technique, bacterial strains Brevibacterium casei NAB46 and Staphylococcus arlettae R2AA77 displaying glutenase activity were screened, identified, and characterized. Whole-genome sequencing found gluten-degrading prolyl endopeptidase (PEP) in the B. casei NAB46 genome and glutamyl endopeptidase (GEP) in the S. arlettae R2AA77 genome. Partially purified PEP has a specific activity of 1.15 U/mg, while GEP has a specific activity of 0.84 U/mg, which are, respectively, 6- and 9-fold times higher after concentrating the enzymes. Our results showed that these enzymes could hydrolyse immunotoxic gliadin peptides recognized in western blot using an anti-gliadin antibody. Additionally, a docking model was proposed for representative gliadin peptide PQPQLPYPQPQLP in the active site of the enzymes, where the residues of the N-terminal peptide extensively interact with the catalytic domain of the enzymes. These bacteria and their associated glutenase enzymes efficiently neutralize gliadin immunogenic epitopes, opening possibilities for their application as a dietary supplement in treating CeD patients.


Assuntos
Doença Celíaca , Animais , Humanos , Glutens , Intestino Delgado , Peptídeo Hidrolases , Bactérias , Mamíferos
7.
Front Vet Sci ; 10: 1149876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252382

RESUMO

Introduction: Honey bee gut microbiota have an important role in host health, nutrition, host-symbiont interaction, and interaction behavior with the surrounding environment. Recent discoveries of strain-level variation, characteristics of protective and nutritional capabilities, and reports of eco-physiological significance to the microbial community have emphasized the importance of honey bee gut microbiota. Many regions of Asia and Africa are inhabited by the dwarf honey bee, Apis florea. Studying its microflora and potential for pollination is therefore of foremost importance. Methods: In the present investigation, we aimed to explore the gut bacteriobiome composition of two distinct honey bee species, Apis florea and Apis cerana indica using high throughput sequencing. Functional predictions of bee gut bacterial communities using PICRUSt2 was carried out. Results and discussion: The phylum Proteobacteria dominated the bacterial community in both A. cerana indica (50.1%) and A. florea (86.7%), followed by Firmicutes (26.29 and 12.81%), Bacteroidetes (23.19 and 0.04%) and Actinobacteria (0.4 and 0.02%) respectively. The gut bacteria of A. cerana indica was more diverse than that of A. florea. The observed variations in bacterial genomic diversity among these critical pollinator species may have been influenced by the apiary management techniques, ecological adaptation factors or habitat size. These variations can have a significant effect in understanding host-symbiont interactions and functioning of gut microbiota highlighting the importance of metagenomic survey in understanding microbial community ecology and evolution. This is the first comparative study on variation in bacterial diversity between two Asian honey bees.

8.
Int. microbiol ; 26(2): 257-267, May. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-220220

RESUMO

Indian lotus (Nelumbo nucifera) is one of the dominant aquatic plants cultivated in Dal Lake, situated at 1586 m above mean sea level (MSL) in the northeast of Srinagar, Kashmir. Despite their economic and ecological role, the microbial communities associated with the lotus plant are still unexplored. In this study, we investigated the prokaryotic communities on surfaces of different lotus microhabitats (roots, rhizome, leaves, flowers, and fruits), lake water, and sediments using 16S rRNA gene amplicon sequencing. Overall, prokaryotic diversity decreased significantly on the surface of lotus microhabitats in comparison to the lake water and sediments. Among the microhabitats of lotus, roots and leaves harbored more diverse communities in comparison to rhizomes, fruits, and flowers. A total of 98 genera were shared by lotus and the Dal Lake sediments and water. However, significant differences were found in their relative abundance; for example, Pseudomonas was the most dominant genus on the majority of lotus microhabitats. On the other hand, Flavobacterium was highly abundant in the lake water, while a higher abundance of Acinetobacter was recorded in sediments. Additionally, we also noted the presence of potential human pathogenic genera including Escherichia-Shigella, Enterobacter, Pantoea, Raoultella, Serratia, and Sphingomonas on the lotus microhabitats. Predicted functions of prokaryotic communities revealed a higher abundance of genes associated with nutrient uptake in the microhabitats of the lotus. This study offered first-hand information on the prokaryotic communities harbored by lotus plants and water and sediments of the Dal Lake and demonstrated the adaptation of diverse communities to microhabitats of lotus.(AU)


Assuntos
Humanos , Lagos , Rizosfera , Sedimentos , Nelumbo , Células Procarióticas , Pesquisa
9.
Drug Discov Today ; 28(2): 103459, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435302

RESUMO

Studies of the human microbiome are providing a deeper understanding of its significance to human health, and increasing evidence links the microbiota with several diseases. Nevertheless, the exact mechanisms involved in human-microbe interactions are mostly undefined. The genomic potential of the human microbiome to biosynthesize distinct molecules outmatches its known chemical space, and small-molecule discovery in this context remains in its infancy. The profiling of microbiome-derived small molecules and their contextualization through cause-effect mechanistic studies may provide a better understanding of host-microbe interactions, guide new therapeutic interventions, and modulate microbiome-based therapies. This review describes the advances, approaches, and allied challenges in mining new microbial scaffolds from the human microbiome using genomic, microbe cultivation, and chemical analytic platforms. In the future, the complete biological characterization of a single microbe-derived molecule that has a specific therapeutic application could resolve the current limitations of microbiota-modulating therapies.


Assuntos
Microbiota , Humanos , Microbiota/genética , Genômica , Interações entre Hospedeiro e Microrganismos
10.
Int Microbiol ; 26(2): 257-267, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36378397

RESUMO

Indian lotus (Nelumbo nucifera) is one of the dominant aquatic plants cultivated in Dal Lake, situated at 1586 m above mean sea level (MSL) in the northeast of Srinagar, Kashmir. Despite their economic and ecological role, the microbial communities associated with the lotus plant are still unexplored. In this study, we investigated the prokaryotic communities on surfaces of different lotus microhabitats (roots, rhizome, leaves, flowers, and fruits), lake water, and sediments using 16S rRNA gene amplicon sequencing. Overall, prokaryotic diversity decreased significantly on the surface of lotus microhabitats in comparison to the lake water and sediments. Among the microhabitats of lotus, roots and leaves harbored more diverse communities in comparison to rhizomes, fruits, and flowers. A total of 98 genera were shared by lotus and the Dal Lake sediments and water. However, significant differences were found in their relative abundance; for example, Pseudomonas was the most dominant genus on the majority of lotus microhabitats. On the other hand, Flavobacterium was highly abundant in the lake water, while a higher abundance of Acinetobacter was recorded in sediments. Additionally, we also noted the presence of potential human pathogenic genera including Escherichia-Shigella, Enterobacter, Pantoea, Raoultella, Serratia, and Sphingomonas on the lotus microhabitats. Predicted functions of prokaryotic communities revealed a higher abundance of genes associated with nutrient uptake in the microhabitats of the lotus. This study offered first-hand information on the prokaryotic communities harbored by lotus plants and water and sediments of the Dal Lake and demonstrated the adaptation of diverse communities to microhabitats of lotus.


Assuntos
Nelumbo , Humanos , Nelumbo/genética , Lagos , RNA Ribossômico 16S/genética , Altitude , Água
11.
Environ Res ; 215(Pt 1): 114199, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058281

RESUMO

In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.


Assuntos
Metano , Solo , Bactérias/genética , Bactérias/metabolismo , Metagenoma , Nitrogênio , Oxirredução , Solo/química , Microbiologia do Solo , Instalações de Eliminação de Resíduos
12.
J Med Microbiol ; 71(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35972461

RESUMO

Introduction. Vaginal colonization of Group B Streptococcus (GBS) is associated with preterm births and neonatal sepsis. Thus routine screening of GBS in prenatal care is recommended.Hypothesis. Chromogenic media (carrot broth) aids in specific and rapid detection of GBS.Aim. To investigate the efficiency of Strep B Carrot Broth for detection of GBS in high vaginal swabs from pregnant women.Methods. In this study 201 vaginal swab samples were collected from pregnant women. Swabs were inoculated in chromogenic media (Strep B Carrot Broth). The positive and negative cultures were inoculated on blood agar and crome agar plates. The colonies were subjected to 16S rRNA sequencing and gene-specific PCR for confirmation. The Christie Atkins Munch Peterson (CAMP) and bile esculin agar (BEA) tests were used for biochemical confirmation. PCR was performed on genomic DNA isolated from uncultured vaginal swabs.Results. It was found that 20/201 (9.9 %) vaginal swab samples were positive in the Strep B Carrot Broth and 17/20 (85 %) and 19/20 (95 %) of these samples yielded colonies on blood agar and crome agar, respectively. Of the 181 carrot broth-negative samples, 1 (0.5 %) and 38 (20.9 %) yielded colonies on blood agar and crome agar plates, respectively. However, 16 s rRNA sequencing revealed that none of the 20 carrot broth-positive cultures were GBS and had sequence similarities to Enterococcus faecalis. This was also confirmed by using gene-specific PCR and BEA positivity. Furthermore, E. faecalis was detected by PCR in DNA isolated from 57 uncultured vaginal swabs samples, GBS could only be detected by PCR in four samples.Conclusion. Carrot broth-based culture can lead to false-positive detection due to the presence of E. faecalis. Thus GBS-positive results in carrot broth must be confirmed by the other molecular and biochemical tests before making a final diagnosis.


Assuntos
Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Feminino , Humanos , Recém-Nascido , Gravidez , Ágar , Meios de Cultura/química , Enterococcus faecalis/genética , Complicações Infecciosas na Gravidez/diagnóstico , RNA Ribossômico 16S/genética , Infecções Estreptocócicas/diagnóstico , Streptococcus agalactiae , Vagina
13.
Arch Microbiol ; 204(8): 495, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35842875

RESUMO

The microbial diversity in the Indian caves is inadequately characterized. This study reports on the culturable microbial communities in caves from the Indian sub-continent. This study aims to expand the current understanding of bacterial diversity in the speleothems and wall deposits from Krem Soitan, Krem Lawbah, Krem Mawpun in Khasi Hills, Meghalaya, India. A culture-dependent approach was employed for elucidating the community structure in the caves using MALDI-TOF spectrometry and 16S rRNA gene sequencing. A high bacterial diversity and a greater bacterial taxonomic diversity is reported using MALDI-TOF spectrometry and 16S rRNA gene sequencing. High microbial enumerations were observed on dilute nutrient agar (5.3 × 103 to 8.8 × 105) followed by M9 minimal medium (4 × 104 to 1.7 × 105) and R2A medium (1.0 × 104 to 5.7 × 105). A total of 826 bacterial isolates were selected and preserved for the study. 295 bacterial isolates were identified using MALDI-TOF spectrometry and the isolates which showed no reliable peaks were further identified by 16S rRNA gene sequencing. A total 91% of the bacterial diversity was dominated by Proteobacteria (61%) and Actinobacteria (30%). In addition, bacterial phyla include Firmicutes (7.45%), Deinococcus-Thermus (0.33%) and Bacteroidetes (0.67%) were found in the samples. At the genus level, Pseudomonas (55%) and Arthrobacter (23%) were ubiquitous followed by Acinetobacter, Bacillus, Brevundimonas, Deinococcus, Flavobacterium, Paenibacillus, Pseudarthrobacter. Multivariate statistical analysis indicated that the bacterial genera formed separate clusters depending on the geochemical constituents in the spring waters suitable for their growth and metabolism. To the best of our knowledge, there are no previous geomicrobiological investigations in these caves and this study is a pioneering culture dependent study of the microbial community with many cultured isolates.


Assuntos
Bactérias , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Espectral
14.
Biomedicines ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453559

RESUMO

Growing evidence suggests an altered gut microbiome in patients with heart failure (HF). However, the exact interrelationship between microbiota, HF, and its consequences on the metabolome are still unknown. We thus aimed here to decipher the association between the severity and progression of HF and the gut microbiome composition and circulating metabolites. Using a mouse model of transverse aortic constriction (TAC), gut bacterial diversity was found to be significantly lower in mice as early as day 7 post-TAC compared to Sham controls (p = 0.03), with a gradual progressive decrease in alpha-diversity on days 7, 14, and 42 (p = 0.014, p = 0.0016, p = 0.0021) compared to day 0, which coincided with compensated hypertrophy, maladaptive hypertrophy, and overtly failing hearts, respectively. Strikingly, segregated analysis based on the severity of the cardiac dysfunction (EF < 40% vs. EF 40−55%) manifested marked differences in the abundance and the grouping of several taxa. Multivariate analysis of plasma metabolites and bacterial diversity produced a strong correlation of metabolic alterations, such as reduced short-chain fatty acids and an increase in primary bile acids, with a differential abundance of distinct bacteria in HF. In conclusion, we showed that HF begets HF, likely via a vicious cycle of an altered microbiome and metabolic products.

15.
BMC Microbiol ; 22(1): 101, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418028

RESUMO

BACKGROUND: Symbiotic associations of endophytic fungi have been proved by possessing an ability to produce hormones and metabolites for their host plant. Members of the Orchidaceae are obligate mycorrhizal species but a non-mycorrhizal association needs more investigation for their ability to promote plant growth and produce plant growth hormones. In the present study, endophytic fungi were isolated from the roots of Dendrobium longicornu Lindl., to investigate the root colonizing activity and role in plant growth and development. RESULTS: Among 23 fungal isolates were identified both by morphological and molecular technique as Penicillium sp., Fusarium sp., Coniochaeta sp., Alternaria sp., and Cladosporium sp. The dominate species were Coniochaeta sp. and Cladosporium sp. The dominant species as per the isolation was Coniochaeta sp. These fungal strains were screened for growth-promoting activity of Cymbidium aloifolium (plantlet) consider as cross genus interaction and Dendrobium longicornu (protocorms) as a host plant in in-vitro condition. Importantly, Cladosporium sp., and Coniochaeta sp. showed successful colonization and peloton formation with roots of C. aloifolium. Moreover, it also enhanced acclimatization of plantlets. Fungal elicitors from nine fungal isolates enhanced the growth of the in vitro grown protocorms of D. longicornu. Key bioactive compounds detected in the fungal colonized plant extract were 2H-pyran-2-one, Cyclopropanecarboxylic acid, Oleic Acid and d-Mannitol, which may have a potential role in plant-microbe interaction. All fungal endophytes were able to synthesize the indole acetic acid (IAA) in presence of tryptophan. Moreover, fungal extract DLCCR7 treated with DL-tryptophan yielded a greater IAA concentration of 43 µg per ml than the other extracts. The iaaM gene involved in IAA synthesis pathway was amplified using iaaM gene primers successfully from Alternaria sp., Cladosporium sp., and Coniochaeta sp. CONCLUSIONS: Hence, this study confirms the production of IAA by endophytes and demonstrated their host as well as cross-genus plant growth-promoting potential by producing metabolites required for the growth of the plant.


Assuntos
Ascomicetos , Orchidaceae , Alternaria/metabolismo , Ascomicetos/metabolismo , Endófitos , Fungos/genética , Fungos/metabolismo , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Orchidaceae/microbiologia , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Triptofano/metabolismo
16.
Microbiol Res ; 254: 126888, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34700185

RESUMO

Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.


Assuntos
Biodiversidade , Interações entre Hospedeiro e Microrganismos , Microbiota , Plantas , Microbiota/fisiologia , Plantas/microbiologia , Plantas/parasitologia , Plantas/virologia
17.
J Diabetes Metab Disord ; 20(2): 1415-1427, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900793

RESUMO

OBJECTIVE: To evaluate the effect of rectal administration of buttermilk processed with medicinal plants on gut microbial composition and thereby on weight in obese individuals. METHODS: With ethics committee approval, 16 obese individuals in the age group 20-50 years (BMI ≥30 kg/m2) were recruited who received a course of 15-enemas over 15-days. Of these, 1st, 8th and 15th enemas were of sesame-oil administered after food, while other enemas were of buttermilk processed with medicinal plants administered before food. Outcome variables viz. anthropometry, body composition, blood glucose, insulin and lipid profile were evaluated on day 0, 16 and 45. Also, microbial composition of buttermilk preparation and faecal samples of patients collected on day 0, 16 and 45 were studied with the help of 16S rRNA gene sequencing. RESULTS: The circumferential measures and skinfold-thickness showed a decrease on day 16, which remained lower as compared to baseline till day 45. A gradual decrease in blood-glucose was seen, which was statistically significant on day 45, while insulin levels increased on day 16 and fell to baseline on day 45. There was an overall increase in bacterial diversity on day 16 that settled back to its original composition by day 45. CONCLUSION: Our findings suggest that buttermilk administration per rectum is effective for a specific period and may have to be repeated for sustained benefits. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40200-021-00879-z.

18.
FEMS Microbiol Lett ; 368(17)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34459476

RESUMO

The current study attempts to analyze recent trends, biases and limitations of cultivation-based microbial diversity studies based on published, novel species in the past 6 years in the International Journal of Systematic and Evolutionary Microbiology (IJSEM), an official publication of the International Committee on Systematics of Prokaryotes (ICSP) and the Bacteriology and Applied Microbiology (BAM) Division of the International Union of Microbiological Societies (IUMS). IJSEM deals with taxa that have validly published names under the International Code of Nomenclature of Prokaryotes (ICNP). All the relevant publications from the last 6 years were retrieved, sorted and analyzed to get the answers to What is the current rate of novel species description? Which country has contributed substantially and which phyla represented better in culturable diversity studies? What are the current limitations? Published data for the past 6 years indicate that 500-900 novel species are reported annually. China, Korea, Germany, UK, India and the USA are at the forefront while contributions from other nations are meager. Despite the recent development in culturomics tools the dominance of Proteobacteria, Bacteroidetes and Actinobacteria are still prevalent in cultivation, while the representation of archaea, obligate anaerobes, microaerophiles, synergistic symbionts, aerotolerant and other fastidious microbes is poor. Single strain-based taxonomic descriptions prevail and emphasis on objective-based cultivation for biotechnological and environmental significance is not yet conspicuous.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Viés , Biodiversidade , China , Alemanha
19.
Genomics ; 113(6): 3635-3643, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450292

RESUMO

The 16S rRNA gene amplicon sequencing is a popular technique that provides accurate characterization of microbial taxonomic abundances but does not provide any functional information. Several tools are available to predict functional profiles based on 16S rRNA gene sequence data that use different genome databases and approaches. As variable regions of partially-sequenced 16S rRNA gene cannot resolve taxonomy accurately beyond the genus level, these tools may give inflated results. Here, we developed 'MicFunPred', which uses a novel approach to derive imputed metagenomes based on a set of core genes only, thereby minimizing false-positive predictions. On simulated datasets, MicFunPred showed the lowest False Positive Rate (FPR) with mean Spearman's correlation of 0.89 (SD = 0.03), while on seven real datasets the mean correlation was 0.75 (SD = 0.08). MicFunPred was found to be faster with low computational requirements and performed better or comparable when compared with other tools.


Assuntos
Bactérias , Metagenoma , Bactérias/genética , Genes de RNAr , Filogenia , RNA Ribossômico 16S/genética
20.
Microbes Infect ; 23(9-10): 104847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34116163

RESUMO

Facultative anaerobes are the most common cause of infections in anoxic parts of the human body, including deep wound, vagina, periodontal pockets, gastrointestinal tract, genitourinary tract and lungs. Generally, antibiotic susceptibility tests (AST) for facultative anaerobes are performed under aerobic conditions due to ease of handling and rapid growth. However, variation in susceptibility of facultative anaerobes to antibiotics under aerobic and anaerobic conditions can lead to failure of antibiotic treatment. Our study evaluated the susceptibility of facultative anaerobic microorganisms to antibiotics during growth under anaerobic or aerobic conditions. We compared the resistance patterns of representatives from 15 bacterial genera isolated from the human-gastrointestinal tract against 22 different antibiotics from six classes under aerobic and anaerobic conditions. Preliminary results obtained by a disc diffusion method were verified using minimum inhibitory concentration (MIC) testing. The results demonstrated that 7-strains had a similar pattern of drug resistance under both conditions, while the remaining ten strains had significant differences in resistance patterns between aerobic and anaerobic conditions for at least one antibiotic. We conclude that successful antibiotic therapy for host-associated pathogens requires proper assessment of the oxygen condition of the growth environment and MIC testing of each pathogen under anaerobic and aerobic conditions.


Assuntos
Bactérias Anaeróbias , Infecções Bacterianas , Anaerobiose , Antibacterianos/farmacologia , Bactérias , Infecções Bacterianas/microbiologia , Feminino , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...