Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958534

RESUMO

Strongly confined electric fields resulting from nanogaps within nanoparticle aggregates give rise to significant enhancement of surface-enhanced Raman scattering (SERS). Nanometer differences in gap sizes lead to drastically different confined field strengths; so much attention has been focused on the development and understanding of nanostructures with controlled gap sizes. In this work, we report a novel petal gap-enhanced Raman tag (GERT) consisting of a bipyramid core and a nitrothiophenol (NTP) spacer to support the growth of hundreds of small petals and compare its SERS emission and localization to a traditional bipyramid aggregate. To do this, we use super resolution spectral SERS imaging that simultaneously captures the SERS images and spectra while varying the incident laser polarization. Intensity fluctuations inherent of SERS enabled super resolution algorithms to be applied, which revealed subdiffraction limited differences in the localization with respect to polarization direction for both particles. Interestingly, however, only the traditional bipyramid aggregates experienced a strong polarization dependence in their SERS intensity and in the plasmon-induced conversion of NTP to dimercaptoazobenzene (DMAB), which was localized with nanometer precision to regions of intense electromagnetic fields. The lack of polarization dependence (validated through electromagnetic simulations) and surface reactions from the bipyramid-GERTs suggests that the emissions arising from the bipyramid-GERTs are less influenced by confined fields.

2.
ACS Meas Sci Au ; 2(4): 332-341, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996539

RESUMO

High spatial resolution imaging and chemical-specific detection in living organisms is important in a wide range of fields from medicine to catalysis. In this work, we characterize a wide-field surface-enhanced Raman scattering (SERS) imaging approach capable of simultaneously capturing images and SERS spectra from nanoparticle SERS tags in cancer cells. By passing the image through a transmission diffraction grating before it reaches an array detector, we record the image and wavelength dispersed signal simultaneously on the camera sensor. Optimization of the experiment provides an approach with better spectral resolution and more rapid acquisition than liquid crystal tunable filters commonly used for wide-field SERS imaging. Intensity fluctuations inherent to SERS enabled localization algorithms to be applied to both the spatial and spectral domain, providing super-resolution SERS images that are correlated with improved peak positions identified in the spectrum of the SERS tag. The detected Raman signal is shown to be sensitive to the focal plane, providing three-dimensional (3D) sectioning abilities for the detected nanoparticles. Our work demonstrates spectrally resolved super-resolution SERS imaging that has the potential to be applied to complex physical and biological imaging applications.

3.
J Phys Chem C Nanomater Interfaces ; 126(34): 14547-14557, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425396

RESUMO

The excitation of plasmon resonances on nanoparticles generates locally enhanced electric fields commonly used for sensing applications and energetic charge carriers can drive chemical transformations as photocatalysts. The surface-enhanced Raman scattering (SERS) spectra from mercaptobenzoic acid (MBA) adsorbed to gold nanoparticles (AuNP) and silica encapsulated gold nanoparticles (AuNP@silica) can be used to assess the impact of energetic charge carriers on the observed signal. Measurements were recorded using a traditional point focused Raman spectroscopy and a wide-field spectral imaging approach to assess changes in the spectra of the different particles at increasing power density. The wide-field approach provides an increase in sampling statistics and shows evidence of SERS frequency fluctuations from MBA at low power densities, where it is commonly difficult to record spectra from a point focused spot. The increased spectral resolution of the point spectroscopy measurement provides improved peak identification and the ability to correlate the frequency fluctuations to charged intermediate species. Interestingly, our work suggests that isolated nanoparticles may undergo frequency fluctuations more readily than aggregates.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37431396

RESUMO

Advances in nanotechnology enable the detection of trace molecules from the enhanced Raman signal generated at the surface of plasmonic nanoparticles. We have developed technology to enable super-resolution imaging of plasmonic nanoparticles, where the fluctuations in the surface enhanced Raman scattering (SERS) signal can be analyzed with localization microscopy techniques to provide nanometer spatial resolution of the emitting molecule's location. Additional work now enables the super-resolved SERS image and the corresponding spectrum to be acquired simultaneously. Here we will discuss how this approach can be applied to provide new insights into biological cells.

5.
ACS Nanosci Au ; 1(1): 38-46, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34966910

RESUMO

Challenges investigating molecules on plasmonic nanostructures have limited understanding of these interactions. However, the chemically specific information in the surface-enhanced Raman scattering (SERS) spectrum can identify perturbations in the adsorbed molecules to provide insight relevant to applications in sensing, catalysis, and energy conversion. Here, we demonstrate spectrally resolved SERS imaging, to simultaneously image and collect the SERS spectra from molecules adsorbed on individual nanoparticles. We observe intensity and frequency fluctuations in the SERS signal on the time scale of tens of milliseconds from n-mercaptobenzoic acid (MBA) adsorbed to gold nanoparticles. The SERS signal fluctuations correlate with density functional theory calculations of radicals generated by the interaction between MBA and plasmon-generated hot electrons. Applying localization microscopy to the data provides a super-resolution spectrally resolved map that indicates the plasmonic-induced molecular charging occurs on the extremities of the nanoparticles, where the localized electromagnetic field is reported to be most intense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...