Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 109(5): 1361-1370, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37967247

RESUMO

OBJECTIVE: Elevated rates of gluconeogenesis are an early pathogenic feature of youth-onset type 2 diabetes (Y-T2D), but targeted first-line therapies are suboptimal, especially in African American (AA) youth. We evaluated glucose-lowering mechanisms of metformin and liraglutide by measuring rates of gluconeogenesis and ß-cell function after therapy in AA Y-T2D. METHODS: In this parallel randomized clinical trial, 22 youth with Y-T2D-age 15.3 ± 2.1 years (mean ± SD), 68% female, body mass index (BMI) 40.1 ± 7.9 kg/m2, duration of diagnosis 1.8 ± 1.3 years-were randomized to metformin alone (Met) or metformin + liraglutide (Lira) (Met + Lira) and evaluated before and after 12 weeks. Stable isotope tracers were used to measure gluconeogenesis [2H2O] and glucose production [6,6-2H2]glucose after an overnight fast and during a continuous meal. ß-cell function (sigma) and whole-body insulin sensitivity (mSI) were assessed during a frequently sampled 2-hour oral glucose tolerance test. RESULTS: At baseline, gluconeogenesis, glucose production, and fasting and 2-hour glucose were comparable in both groups, though Met + Lira had higher hemoglobin A1C. Met + Lira had a greater decrease from baseline in fasting glucose (-2.0 ± 1.3 vs -0.6 ± 0.9 mmol/L, P = .008) and a greater increase in sigma (0.72 ± 0.68 vs -0.05 ± 0.71, P = .03). The change in fractional gluconeogenesis was similar between groups (Met + Lira: -0.36 ± 9.4 vs Met: 0.04 ± 12.3%, P = .9), and there were no changes in prandial gluconeogenesis or mSI. Increased glucose clearance in both groups was related to sigma (r = 0.63, P = .003) but not gluconeogenesis or mSI. CONCLUSION: Among Y-T2D, metformin with or without liraglutide improved glycemia but did not suppress high rates of gluconeogenesis. Novel therapies that will enhance ß-cell function and target the elevated rates of gluconeogenesis in Y-T2D are needed.

2.
Am J Perinatol ; 40(12): 1286-1291, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-34500483

RESUMO

OBJECTIVE: This study aimed to investigate human fetal exposure to non-nutritive sweeteners (NNS) by analyzing amniotic fluid and umbilical cord blood. STUDY DESIGN: Concentrations of four NNS (acesulfame-potassium [ace-K], saccharin, steviol glucuronide, and sucralose) were measured in amniotic fluid (n = 13) and cord blood samples (n = 15) using liquid chromatography-mass spectrometry. Amniotic fluid samples were obtained for research purposes at the time of term elective cesarean birth or clinically indicated third trimester amnioreduction at Mercy Hospital for Women (Melbourne, Australia). All except four women were in the fasting state. Cord blood samples were obtained from an independent cohort of newborns whose mothers were enrolled in a separate clinical trial at the National Institutes of Health. RESULTS: Ten of 13 amniotic fluid samples contained at least one NNS (ace-K, saccharin, steviol glucuronide, and/or sucralose). Maximum amniotic fluid NNS concentrations of ace-K, saccharin, steviol glucuronide, and sucralose were 78.9, 55.9, 93.5, and 30.6 ng/mL, respectively. Ace-K and saccharin were present in 100% and 80% of the cord blood samples, with maximal concentrations of 6.5 and 2.7 ng/mL, respectively. Sucralose was not detected and steviol glucuronide was not measurable in any of the cord blood samples. CONCLUSION: Our results provide evidence of human transplacental transmission of NNS. Based on results predominantly obtained from rodent models, we speculate that NNS exposure may adversely influence the offsprings' metabolic health. Well-designed, prospective clinical trials are necessary to understand the impact of NNS intake during pregnancy on human development and long-term health. KEY POINTS: · NNS consumption during pregnancy has increased in recent years.. · Maternal NNS intake during pregnancy is associated with preterm birth and higher infant weight gain in epidemiologic studies.. · In rodents, in utero NNS exposure induces metabolic abnormalities in mothers and their offspring, alters offspring gut microbiota composition, and promotes sweet taste preference in adulthood.. · It is presently unknown whether and to what degree maternal NNS ingestion in humans leads to direct in utero exposure.. · This study provides the first evidence of in utero NNS exposure in humans and highlights the urgent need to investigate clinical consequences of early life NNS exposure on metabolism, weight, taste preference, and general health..


Assuntos
Adoçantes não Calóricos , Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Gravidez , Líquido Amniótico/química , Sangue Fetal/química , Adoçantes não Calóricos/efeitos adversos , Estudos Prospectivos , Sacarina/análise , Sacarina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA