Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(8): 1408-1421, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772743

RESUMO

Tuberculosis (TB) is one of the most significant world health problems, responsible for 1.5 M deaths in 2020, and yet, current treatments rely largely on 40 year old paradigms. Although the rifamycins (RIFs), best exemplified by the drug rifampin (RMP), represent a well-studied and therapeutically effective chemotype that targets the bacterial RNA polymerase (RNAP), these agents still suffer from serious drawbacks including the following: 3-9 month treatment times; cytochrome P450 (Cyp450) induction [particularly problematic for human immunodeficiency virus-Mycobacterium tuberculosis (MTB) co-infection]; and the existence of RIF-resistant (RIFR) MTB strains. We have utilized a structure-based drug design approach to synthesize and test 15 benzoxazinorifamycins (bxRIFs), congeners of the clinical candidate rifalazil, to minimize human pregnane X receptor (hPXR) activation while improving potency against MTB. We have determined the compounds' activation of the hPXR [responsible for inducing Cyp450 3A4 (CYP3A4)]. Compound IC50s have been determined against the wild-type and the most prevalent RIFR (ß-S450L) mutant MTB RNAPs. We have also determined their bactericidal activity against "normal" replicating MTB and a model for non-replicating, persister MTB. We have identified a minimal substitution and have probed larger substitutions that exhibit negligible hPXR activation (1.2-fold over the dimethyl sulfoxide control), many of which are 5- to 10-fold more potent against RNAPs and MTB than RMP. Importantly, we have analogues that are essentially equipotent against replicating MTB and non-replicating persister MTB, a property that is correlated with faster kill rates and may lead to shorter treatment durations. This work provides a proof of principle that the ansamycin core remains an attractive and effective scaffold for novel and dramatically improved RIFs.


Assuntos
Infecções por HIV , Rifamicinas , Tuberculose , Adulto , Infecções por HIV/tratamento farmacológico , Humanos , Receptor de Pregnano X , Rifampina/farmacologia , Rifampina/uso terapêutico , Rifamicinas/farmacologia , Rifamicinas/uso terapêutico , Tuberculose/tratamento farmacológico
2.
ACS Infect Dis ; 8(8): 1422-1438, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772744

RESUMO

Rifampin (RMP), a very potent inhibitor of the Mycobacterium tuberculosis (MTB) RNA polymerase (RNAP), remains a keystone in the treatment of tuberculosis since its introduction in 1965. However, rifamycins suffer from serious drawbacks, including 3- to 9-month treatment times, Cyp450 induction (particularly problematic for HIV-MTB coinfection), and resistant mutations within RNAP that yield RIF-resistant (RIFR) MTB strains. There is a clear and pressing need for improved TB therapies. We have utilized a structure-based drug design approach to synthesize and test novel benzoxazinorifamycins (bxRIF), congeners of the clinical candidate rifalazil. Our goal is to gain binding interactions that will compensate for the loss of RIF-binding affinity to the (RIFR) MTB RNAP and couple those with substitutions that we have previously found that essentially eliminate Cyp450 induction. Herein, we report a systematic exploration of 42 substituted bxRIFs that have yielded an analogue (27a) that has an excellent in vitro activity (MTB RNAP inhibition, MIC, MBC), enhanced (∼30-fold > RMP) activity against RIFR MTB RNAP, negligible hPXR activation, good mouse pharmacokinetics, and excellent activity with no observable adverse effects in an acute mouse TB model. In a time-kill study, 27a has a 7 day MBC that is ∼10-fold more potent than RMP. These results suggest that 27a may exhibit a faster kill rate than RMP, which could possibly reduce the clinical treatment time. Our synthetic protocol enabled the synthesis of ∼2 g of 27a at >95% purity in 3 months, demonstrating the feasibility of scale-up synthesis of bxRIFs for preclinical and clinical studies.


Assuntos
Mycobacterium tuberculosis , Rifamicinas , Tuberculose , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana , Camundongos , Rifampina/farmacologia , Rifamicinas/farmacologia , Tuberculose/tratamento farmacológico
3.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927749

RESUMO

Nitroimidazole drugs have a long history as therapeutic agents to treat bacterial and parasitic diseases. The discovery in 1989 of a bicyclic nitroimidazole lead, displaying in vitro and in vivo antitubercular activity, spurred intensive exploration of this and related scaffolds, which led to the regulatory approval of pretomanid and delamanid as a new class of tuberculosis drugs. Much of the discovery work related to this took place over a 20-year period ending in 2010, which is covered in a number of cited reviews. This review highlights subsequent research published over the 2011-August 2020 timeframe, and captures detailed structure-activity relationship studies and synthetic strategies directed towards uncovering newer generation drugs for both tuberculosis and selected neglected tropical diseases. Additionally, this review presents in silico calculations relating to the drug-like properties of lead compounds and clinical agents, as well as chemical development and manufacturing processes toward providing bulk drug supplies.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Desenvolvimento de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Antituberculosos/uso terapêutico , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Nitroimidazóis/uso terapêutico , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
Bioorg Med Chem ; 28(11): 115480, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327351

RESUMO

Studies demonstrate that small molecule targeting of atypical protein kinase C (aPKC) may provide an effective means to control vascular permeability, prevent edema, and reduce inflammation providing novel and important alternatives to anti-VEGF therapies for certain blinding eye diseases. Based on a literature tricyclic thieno[2,3-d]pyrimidine lead (1), an ATP-competitive inhibitor of the aPKC iota (ι) and aPKC zeta (ζ) isoforms, we have synthesized a small series of compounds in 1-2 steps from a readily available chloro intermediate. A single pyridine congener was also made using 2D NMR to assign regiochemistry. Within the parent pyrimidine series, a range of potencies was observed against aPKCζ whereas the pyridine congener was inactive. Selected compounds were also tested for their effect toward VEGF-induced permeability in BREC cells. The most potent of these (7l) was further assayed against the aPKCι isoform and showed a favorable selectivity profile against a panel of 31 kinases, including kinases from the AGC superfamily, with a focus on PKC isoforms and kinases previously shown to affect permeability. Further testing of 7l in a luciferase assay in HEK293 cells showed an ability to prevent TNF-α induced NFκB activation while not having any effect on cell survival. Intravitreal administration of 7l to the eye yielded a complete reduction in permeability in a test to determine whether the compound could block VEGF- and TNFα-induced permeability across the retinal vasculature in a rat model. The compound in mice displayed good microsomal stability and in plasma moderate exposure (AUC and Cmax), low clearance, a long half-life and high oral bioavailability. With IV dosing, higher levels were observed in the brain and eye relative to plasma, with highest levels in the eye by either IV or PO dosing. With a slow oral absorption profile, 7l accumulates in the eye to maintain a high concentration after dosing with higher levels than in plasma. Compound 7l may represent a class of aPKC inhibitors for further investigation.


Assuntos
Citocinas/antagonistas & inibidores , Edema/tratamento farmacológico , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Ratos Long-Evans , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Sci Rep ; 9(1): 10245, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308397

RESUMO

The innate immune system senses microbial ligands through pattern recognition and triggers downstream signaling cascades to promote inflammation and immune defense mechanisms. Emerging evidence suggests that cells also recognize alterations in host processes induced by infection as triggers. Protein ubiquitination and deubiquitination are post-translational modification processes essential for signaling and maintenance of cellular homeostasis, and infections can cause global alterations in the host ubiquitin proteome. Here we used a chemical biology approach to perturb the cellular ubiquitin proteome as a simplified model to study the impact of ubiquitin homeostasis alteration on macrophage function. Perturbation of ubiquitin homeostasis led to a rapid and transient burst of reactive oxygen species (ROS) that promoted macrophage inflammatory and anti-infective capacity. Moreover, we found that ROS production was dependent on the NOX2 phagocyte NADPH oxidase. Global alteration of the ubiquitin proteome also enhanced proinflammatory cytokine production in mice stimulated with a sub-lethal dose of LPS. Collectively, our findings suggest that major changes in the host ubiquitin landscape may be a potent signal to rapidly deploy innate immune defenses.


Assuntos
Macrófagos/metabolismo , Estresse Oxidativo/imunologia , Ubiquitinação/fisiologia , Animais , Feminino , Homeostase , Imunidade Inata/fisiologia , Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Oxirredução , Fagócitos/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
6.
Structure ; 27(6): 907-922.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30956132

RESUMO

The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.


Assuntos
Cobre/química , Simulação de Dinâmica Molecular , Mutação , Proteínas Priônicas/química , Proteínas Priônicas/genética , Domínios Proteicos , Animais , Linhagem Celular , Cobre/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Proteínas Priônicas/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos
7.
J Labelled Comp Radiopharm ; 62(5): 202-208, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30828860

RESUMO

As part of a program toward making analogues of amlexanox (1), currently under clinical investigation for the treatment of type 2 diabetes and obesity, we have synthesized derivative 5 in which deuterium has been introduced into two sites of metabolism on the C-7 isopropyl function of amlexanox. The synthesis of 5 was completed in an efficient three-step process utilizing reduction of key olefin 7b to 8 by Wilkinson's catalyst to provide specific incorporation of di-deuterium across the double bond. Compound 5 displayed nearly equivalent potency to amlexanox (IC50 , 1.1µM vs 0.6µM, respectively) against recombinant human TBK1. When incubated with human, rat, and mouse liver microsomes, amlexanox (1) and d2 -amlexanox (5) were stable (t1/2  > 60 minutes) with 1 showing marginally greater stability relative to 5 except for rat liver microsomes. These data show that incorporating deuterium into two sites of metabolism does not majorly suppress Cyp-mediated metabolism relative to amlexanox.


Assuntos
Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Deutério/química , Microssomos/metabolismo , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Técnicas de Química Sintética , Estabilidade de Medicamentos , Humanos , Marcação por Isótopo , Cinética , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos
8.
Tetrahedron Lett ; 60(30): 2035-2037, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32831416

RESUMO

We report on an approach to truncate the tricyclic 5H-chromeno[2,3-b]pyridin-5-one core of amlexanox, an approved drug under investigation for the treatment of obesity, to the bicyclic 4H-pyrano[2,3-b]pyridin-4-one (8-azachromone) core. A short, concise synthesis generates a key intermediate with requisite functionality on the pyridyl A-ring and iodo functionality on the 4-pyrone B-ring upon which palladium-catalyzed cross-coupling and subsequent reactions generate representative analogues. One of these shows a 14.2-fold increase in aqueous solubility over amlexanox.

9.
Pharmacol Ther ; 195: 111-131, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30347213

RESUMO

Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.


Assuntos
Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Diferenciação Celular , Di-Hidro-Orotato Desidrogenase , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/biossíntese
10.
Bioorg Med Chem ; 26(20): 5443-5461, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30270002

RESUMO

The non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and inhibitor of nuclear factor kappa-B kinase ε (IKKε) play a key role in insulin-independent pathways that promote energy storage and block adaptive energy expenditure during obesity. Utilizing docking calculations and the x-ray structure of TBK1 bound to amlexanox, an inhibitor of these kinases with modest potency, a series of analogues was synthesized to develop a structure activity relationship (SAR) around the A- and C-rings of the core scaffold. A strategy was developed wherein R7 and R8 A-ring substituents were incorporated late in the synthetic sequence by utilizing palladium-catalyzed cross-coupling reactions on appropriate bromo precursors. Analogues display IC50 values as low as 210 nM and reveal A-ring substituents that enhance selectivity toward either kinase. In cell assays, selected analogues display enhanced phosphorylation of p38 or TBK1 and elicited IL-6 secretion in 3T3-L1 adipocytes better than amlexanox. An analogue bearing a R7 cyclohexyl modification demonstrated robust IL-6 production in 3T3-L1 cells as well as a phosphorylation marker of efficacy and was tested in obese mice where it promoted serum IL-6 response, weight loss, and insulin sensitizing effects comparable to amlexanox. These studies provide impetus to expand the SAR around the amlexanox core toward uncovering analogues with development potential.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Obesidade/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Células 3T3-L1 , Aminação , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Cromanos/síntese química , Cromanos/química , Cromanos/farmacologia , Cromanos/uso terapêutico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Obesidade/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/síntese química , Piridinas/uso terapêutico
11.
Mol Pharmacol ; 94(4): 1210-1219, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30082428

RESUMO

Chronic low-grade inflammation is a hallmark of obesity, which is a risk factor for the development of type 2 diabetes. The drug amlexanox inhibits IκB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) to promote energy expenditure and improve insulin sensitivity. Clinical studies have demonstrated efficacy in a subset of diabetic patients with underlying adipose tissue inflammation, albeit with moderate potency, necessitating the need for improved analogs. Herein we report crystal structures of TBK1 in complex with amlexanox and a series of analogs that modify its carboxylic acid moiety. Removal of the carboxylic acid or mutation of the adjacent Thr156 residue significantly reduces potency toward TBK1, whereas conversion to a short amide or ester nearly abolishes the inhibitory effects. IKKε is less affected by these modifications, possibly due to variation in its hinge that allows for increased conformational plasticity. Installation of a tetrazole carboxylic acid bioisostere improved potency to 200 and 400 nM toward IKKε and TBK1, respectively. Despite improvements in the in vitro potency, no analog produced a greater response in adipocytes than amlexanox, perhaps because of altered absorption and distribution. The structure-activity relationships and cocrystal structures described herein will aid in future structure-guided inhibitor development using the amlexanox pharmacophore for the treatment of obesity and type 2 diabetes.


Assuntos
Aminopiridinas/farmacologia , Ácidos Carboxílicos/farmacologia , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
12.
J Med Chem ; 61(12): 5162-5186, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29727569

RESUMO

We pursued a structure-guided approach toward the development of improved dihydroorotate dehydrogenase (DHODH) inhibitors with the goal of forming new interactions between DHODH and the brequinar class of inhibitors. Two potential residues, T63 and Y356, suitable for novel H-bonding interactions, were identified in the brequinar-binding pocket. Analogues were designed to maintain the essential pharmacophore and form new electrostatic interactions through strategically positioned H-bond accepting groups. This effort led to the discovery of potent quinoline-based analogues 41 (DHODH IC50 = 9.71 ± 1.4 nM) and 43 (DHODH IC50 = 26.2 ± 1.8 nM). A cocrystal structure between 43 and DHODH depicts a novel water mediated H-bond interaction with T63. Additional optimization led to the 1,7-naphthyridine 46 (DHODH IC50 = 28.3 ± 3.3 nM) that forms a novel H-bond with Y356. Importantly, compound 41 possesses significant oral bioavailability ( F = 56%) and an elimination t1/2 = 2.78 h (PO dosing). In conclusion, the data supports further preclinical studies of our lead compounds toward selection of a candidate for early-stage clinical development.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Quinolinas/química , Administração Oral , Animais , Compostos de Bifenilo/química , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Feminino , Células HCT116 , Meia-Vida , Humanos , Ligação de Hidrogênio , Camundongos Endogâmicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Piridinas/química , Pirimidinas/química , Solubilidade , Relação Estrutura-Atividade , Termodinâmica
13.
Org Biomol Chem ; 16(37): 8245-8248, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-29537042

RESUMO

Two novel cyclic quaternary amine crosslinking probes are synthesized for structural mass spectrometry of protein complexes in solution and for analysis of protein interactions in organellar and whole cell extracts. Each exhibits high aqueous solubility, excellent protein crosslinking efficiencies, low collision induced dissociation (CID) energy fragmentation efficiencies, high stoichiometries of reaction, increased charges of crosslinked peptide ions, and maintenance of overall surface charge balance of crosslinked proteins.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas/química , Compostos de Amônio Quaternário/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Frutose-Bifosfato Aldolase/química , Humanos , Íons/química , Modelos Moleculares , Peptídeos/análise
14.
Chemistry ; 23(56): 13875-13878, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28833638

RESUMO

Brequinar, a potent dihydroorotate dehydrogenase (DHODH) inhibitor, has been evaluated in multiple clinical trials as a potential treatment for cancer. To further understand brequinar-based DHODH inhibition and DHODH's therapeutic relevance in cancer, we have developed novel brequinar-based probes. We disclose a 16-step convergent synthesis of the first brequinar-PROTAC and a four-step approach towards the first mitochondrial-directed brequinar probe. A PROTAC and mitochondria-directed probe of brequinar both possess cytotoxicity that is superior to brequinar in a colony formation assay.

15.
Bioorg Med Chem Lett ; 27(18): 4350-4353, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28838693

RESUMO

Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), rationally guided structural-based design resulted in the discovery of a small series of 5'-phenyl-1,2,5,6-tetrahydro-3,3'-bipyridines (3a-3e) incorporating a phenyl ring off the pyridine core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- and 5-positions, respectively, and then subsequent modifications were made on the flanking pyridyl ring to provide target compounds. Compound 3a is a novel antagonist, which is highly selective for α3ß4 nAChR (Ki=123nM) over the α4ß2 and α7 receptors.


Assuntos
Desenho de Fármacos , Antagonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/química , Piridinas/síntese química , Piridinas/química , Ratos , Relação Estrutura-Atividade
16.
Neuropsychopharmacology ; 42(10): 1940-1949, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28492278

RESUMO

Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [3H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [3H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 µM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.


Assuntos
Anfetamina/farmacologia , Dopamina/metabolismo , Psicotrópicos/farmacologia , Reforço Psicológico , Tamoxifeno/análogos & derivados , Tamoxifeno/administração & dosagem , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/embriologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Autoadministração , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Trítio
17.
Neurochem Res ; 42(6): 1823-1832, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28255754

RESUMO

Glutamate uptake into synaptic vesicles in nerve terminals is a pivotal step in glutamate synaptic transmission. Glutamate is the major excitatory neurotransmitter and, as such, the vesicular glutamate transporter (VGLUT) responsible for this uptake is involved in a variety of nervous system functions and various types of pathophysiology. As yet, no VGLUT-specific, membrane-permeable agents have been developed to affect neuronal function in intact neurons, although two potent VGLUTspecific inhibitors are known. These compounds contain diazo and highly charged sulfonic acid groups, rendering them membrane-impermeable and potentially cytotoxic. In an effort to eliminate these undesirable properties, we have developed two novel agents, Brilliant Yellow analogs 1 and 2, which are free of these two groups. We show here that these agents retain highly VGLUT-selective inhibitory activity, despite their reduction in potency, and exhibit no significant cellular toxicity. Potential use of this molecular modification is discussed.


Assuntos
Compostos Azo/química , Compostos Azo/metabolismo , Benzenossulfonatos/química , Benzenossulfonatos/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica/fisiologia , Células PC12 , Ratos , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo
18.
Bioorg Med Chem ; 24(21): 5495-5504, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647375

RESUMO

The clinical selective estrogen receptor modulator tamoxifen is also a modest inhibitor of protein kinase C, a target implicated in several untreatable brain diseases such as amphetamine abuse. This inhibition and tamoxifen's ability to cross the blood brain barrier make it an attractive scaffold to conduct further SAR studies toward uncovering effective therapies for such diseases. Utilizing the known compound 6a as a starting template and guided by computational tools to derive physicochemical properties known to be important for CNS permeable drugs, the design and synthesis of a small series of novel triarylacrylonitrile analogues have been carried out providing compounds with enhanced potency and selectivity for PKC over the estrogen receptor relative to tamoxifen. Shortened synthetic routes compared to classical procedures have been developed for analogues incorporating a ß-phenyl ring, which involve installing dialkylaminoalkoxy side chains first off the α and/or α' rings of a precursor benzophenone and then condensing the resultant ketones with phenylacetonitrile anion. A second novel, efficient and versatile route utilizing Suzuki chemistry has also been developed, which will allow for the introduction of a wide range of ß-aryl or ß-heteroaryl moieties and side-chain substituents onto the acrylonitrile core. For analogues possessing a single side chain off the α- or α'-ring, novel 2D NMR experiments have been carried out that allow for unambiguous assignment of E- and Z-stereochemistry. From the SAR analysis, one compound, 6c, shows markedly increased potency and selectivity for inhibiting PKC with an IC50 of 80nM for inhibition of PKC protein substrate and >10µM for binding to the estrogen receptor α (tamoxifen IC50=20µM and 222nM, respectively). The data on 6c provide support for further exploration of PKC as a druggable target for the treatment of amphetamine abuse.


Assuntos
Acrilonitrila/farmacologia , Desenho de Fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tamoxifeno/farmacologia , Acrilonitrila/síntese química , Acrilonitrila/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tamoxifeno/química
19.
Antimicrob Agents Chemother ; 60(7): 4183-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139470

RESUMO

Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection.


Assuntos
Antivirais/farmacologia , Animais , Enzimas Desubiquitinantes/metabolismo , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Macrófagos/virologia , Camundongos , Norovirus/efeitos dos fármacos , Norovirus/metabolismo , Replicação Viral/efeitos dos fármacos
20.
Mol Pharm ; 12(9): 3399-407, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26262434

RESUMO

Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and preclinical development of ester prodrugs.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/farmacologia , Ésteres/farmacologia , Oseltamivir/farmacologia , Pró-Fármacos/farmacologia , Animais , Linhagem Celular , Humanos , Hidrólise , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Cinética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...