Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313033

RESUMO

Anthropogenic activities increase sediment suspended in the water column and deposition on reefs can be largely dependent on colony morphology. Massive and plating corals have a high capacity to trap sediments, and active removal mechanisms can be energetically costly. Branching corals trap less sediment but are more susceptible to light limitation caused by suspended sediment. Despite deleterious effects of sediments on corals, few studies have examined the molecular response of corals with different morphological characteristics to sediment stress. To address this knowledge gap, this study assessed the transcriptomic responses of branching and massive corals in Florida and Hawai'i to varying levels of sediment exposure. Gene expression analysis revealed a molecular responsiveness to sediments across species and sites. Differential Gene Expression followed by Gene Ontology (GO) enrichment analysis identified that branching corals had the largest transcriptomic response to sediments, in developmental processes and metabolism, while significantly enriched GO terms were highly variable between massive corals, despite similar morphologies. Comparison of DEGs within orthogroups revealed that while all corals had DEGs in response to sediment, there was not a concerted gene set response by morphology or location. These findings illuminate the species specificity and genetic basis underlying coral susceptibility to sediments.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Perfilação da Expressão Gênica , Transcriptoma/genética , Água
2.
PLoS Comput Biol ; 19(10): e1011568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37862349

RESUMO

Histone ChIP-seq is one of the primary methods for charting the cellular epigenomic landscape, the components of which play a critical regulatory role in gene expression. Analyzing the activity of regulatory elements across datasets and cell types can be challenging due to shifting peak positions and normalization artifacts resulting from, for example, differing read depths, ChIP efficiencies, and target sizes. Moreover, broad regions of enrichment seen in repressive histone marks often evade detection by commonly used peak callers. Here, we present a simple and versatile method for identifying enriched regions in ChIP-seq data that relies on estimating a gamma distribution fit to non-overlapping 5kB genomic bins to establish a global background. We use this distribution to assign a probability of being signal (PBS) between zero and one to each 5 kB bin. This approach, while lower in resolution than typical peak-calling methods, provides a straightforward way to identify enriched regions and compare enrichments among multiple datasets, by transforming the data to values that are universally normalized and can be readily visualized and integrated with downstream analysis methods. We demonstrate applications of PBS for both broad and narrow histone marks, and provide several illustrations of biological insights which can be gleaned by integrating PBS scores with downstream data types.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Histonas , Histonas/genética , Histonas/metabolismo , Imunoprecipitação da Cromatina/métodos , Genoma , Probabilidade , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Database (Oxford) ; 20222022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976727

RESUMO

Reproducibility of research is essential for science. However, in the way modern computational biology research is done, it is easy to lose track of small, but extremely critical, details. Key details, such as the specific version of a software used or iteration of a genome can easily be lost in the shuffle or perhaps not noted at all. Much work is being done on the database and storage side of things, ensuring that there exists a space-to-store experiment-specific details, but current mechanisms for recording details are cumbersome for scientists to use. We propose a new metadata description language, named MEtaData Format for Open Reef Data (MEDFORD), in which scientists can record all details relevant to their research. Being human-readable, easily editable and templatable, MEDFORD serves as a collection point for all notes that a researcher could find relevant to their research, be it for internal use or for future replication. MEDFORD has been applied to coral research, documenting research from RNA-seq analyses to photo collections.


Assuntos
Idioma , Metadados , Biologia Computacional , Humanos , Reprodutibilidade dos Testes , Software
4.
Bioinform Adv ; 2(1): vbab025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699351

RESUMO

Motivation: Leveraging cross-species information in protein function prediction can add significant power to network-based protein function prediction methods, because so much functional information is conserved across at least close scales of evolution. We introduce MUNDO, a new cross-species co-embedding method that combines a single-network embedding method with a co-embedding method to predict functional annotations in a target species, leveraging also functional annotations in a model species network. Results: Across a wide range of parameter choices, MUNDO performs best at predicting annotations in the mouse network, when trained on mouse and human protein-protein interaction (PPI) networks, in the human network, when trained on human and mouse PPIs, and in Baker's yeast, when trained on Fission and Baker's yeast, as compared to competitor methods. MUNDO also outperforms all the cross-species methods when predicting in Fission yeast when trained on Fission and Baker's yeast; however, in this single case, discarding the information from the other species and using annotations from the Fission yeast network alone usually performs best. Availability and implementation: All code is available and can be accessed here: github.com/v0rtex20k/MUNDO. Supplementary information: Supplementary data are available at Bioinformatics Advances online. Additional experimental results are on our github site.

5.
APL Bioeng ; 4(2): 026105, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32455252

RESUMO

Metastasis, the leading cause of death in cancer patients, requires the invasion of tumor cells through the stroma in response to migratory cues, in part provided by the extracellular matrix (ECM). Recent advances in proteomics have led to the identification of hundreds of ECM proteins, which are more abundant in tumors relative to healthy tissue. Our goal was to develop a pipeline to easily predict which ECM proteins are more likely to have an effect on cancer invasion and metastasis. We evaluated the effect of four ECM proteins upregulated in breast tumor tissue in multiple human breast cancer cell lines in three assays. There was no linear relationship between cell adhesion to ECM proteins and ECM-driven 2D cell migration speed, persistence, or 3D invasion. We then used classifiers and partial-least squares regression analysis to identify which metrics best predicted ECM-driven 2D migration and 3D invasion responses. We find that ECM-driven 2D cell migration speed or persistence did not predict 3D invasion in response to the same cue. However, cell adhesion, and in particular cell elongation and shape irregularity, accurately predicted the magnitude of ECM-driven 2D migration and 3D invasion. Our models successfully predicted the effect of novel ECM proteins in a cell-line specific manner. Overall, our studies identify the cell morphological features that determine 3D invasion responses to individual ECM proteins. This platform will help provide insight into the functional role of ECM proteins abundant in tumor tissue and help prioritize strategies for targeting tumor-ECM interactions to treat metastasis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29152409

RESUMO

As the catalogue of sequenced genomes and metagenomes continues to grow, massively parallel approaches for the comprehensive and functional analysis of gene products and regulatory elements are becoming increasingly valuable. Current strategies to synthesize or clone complex libraries of DNA sequences are limited by the length of the DNA targets, throughput and cost. Here, we show that long-adapter single-strand oligonucleotide (LASSO) probes can capture and clone thousands of kilobase DNA fragments in a single reaction. As a proof-of-principle, we simultaneously cloned >3,000 bacterial open reading frames (ORFs) from E. coli genomic DNA (spanning 400-5,000 bp targets). Targets were enriched up to a median of ~60-fold compared to non-targeted genomic regions. At a cutoff of 3 times the median non-target reads per kilobase of genetic element per million reads, ~75% of the targeted ORFs were successfully captured. We also show that LASSO probes can clone human ORFs from complementary DNA, and an ORF library from a human-microbiome sample. LASSO probes could be used for the preparation of long-read sequencing libraries and for massively multiplexed cloning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...