Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 193: 208-217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956784

RESUMO

Photodynamic therapy (PDT) for deep-seated tumors is still challenging due to the limited penetration of visible light through tissues. To resolve this limitation, systems based on bioluminescence resonance energy transfer (BRET), that do not require an external light source are proposed. Herein, for BRET-activated PDT we developed proteinaceous BRET-pair consisting of luciferase NanoLuc, which acts as energy donor upon addition of luciferase specific substrate furimazine, and phototoxic protein SOPP3 as a photosensitizer. We have shown that hybrid protein NanoLuc-SOPP3 is an excellent BRET pair with BRET ratio of 1.12. Targeted delivery of NanoLuc-SOPP3 BRET pair via tumor-specific small liposomes (∼100 nm) to tumors overexpressing the HER2-receptor (human epidermal growth factor receptor 2) was demonstrated in vitro and in vivo. The proposed BRET-activated system has been shown to significantly suppress tumor growth in a model of subcutaneous and, more importantly, deep-seated tumor model. Taking into account the in vivo efficiency of proposed BRET-activated system, we believe that it has great potential for depth-independent PDT and can significantly broaden the application of PDT in the clinic.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Lipossomos , Luciferases/genética , Luciferases/metabolismo , Transferência de Energia , Neoplasias/tratamento farmacológico
2.
Front Bioeng Biotechnol ; 11: 1341685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304104

RESUMO

The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.

3.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230729

RESUMO

Peptide nucleic acid (PNA) may be used in various biomedical applications; however, these are currently limited, due to its low solubility in aqueous solutions. In this study, a methodology to overcome this limitation is demonstrated, as well as the effect of PNA on cell viability. We show that extruding a mixture of natural phospholipids and short (6-22 bases), cytosine-rich PNA through a 100 nm pore size membrane under mild acidic conditions resulted in the formation of small (60-90 nm in diameter) multilamellar vesicles (SMVs) comprising several (3-5) concentric lipid membranes. The PNA molecules, being positively charged under acidic conditions (due to protonation of cytosine bases in the sequence), bind electrostatically to negatively charged phospholipid membranes. The large membrane surface area allowed the encapsulation of thousands of PNA molecules in the vesicle. SMVs were conjugated with the designed ankyrin repeat protein (DARPin_9-29), which interacts with human epidermal growth factor receptor 2 (HER2), overexpressed in human breast cancer. The conjugate was shown to enter HER2-overexpressing cells by receptor-mediated endocytosis. PNA molecules, released from lysosomes, aggregate in the cytoplasm into micron-sized particles, which interfere with normal cell functioning, causing cell death. The ability of DARPin-functionalized SMVs to specifically deliver large quantities of PNA to cancer cells opens a new promising avenue for cancer therapy.

4.
Light Sci Appl ; 11(1): 38, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190528

RESUMO

Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues does not make possible the treatment of deep-seated neoplasms and thus complicates its widespread clinical adoption. Here, we introduce the concept of genetically encoded bioluminescence resonance energy transfer (BRET)-activated PDT, which combines an internal light source and a photosensitizer (PS) in a single-genetic construct, which can be delivered to tumors seated at virtually unlimited depth and then triggered by the injection of a substrate to initiate their treatment. To illustrate the concept, we engineered genetic NanoLuc-miniSOG BRET pair, combining NanoLuc luciferase flashlight and phototoxic flavoprotein miniSOG, which generates ROS under luciferase-substrate injection. We prove the concept feasibility in mice bearing NanoLuc-miniSOG expressing tumor, followed by its elimination under the luciferase-substrate administration. Then, we demonstrate a targeted delivery of NanoLuc-miniSOG gene, via tumor-specific lentiviral particles, into a tumor, followed by its successful elimination, with tumor-growth inhibition (TGI) coefficient exceeding 67%, which confirms a great therapeutic potential of the proposed concept. In conclusion, this study provides proof-of-concept for deep-tissue "photodynamic" therapy without external light source that can be considered as an alternative for traditional PDT.

5.
Molecules ; 26(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833876

RESUMO

Barnase is an extracellular ribonuclease secreted by Bacillus amyloliquefaciens that was originally studied as a small stable enzyme with robust folding. The identification of barnase intracellular inhibitor barstar led to the discovery of an incredibly strong protein-protein interaction. Together, barnase and barstar provide a fully genetically encoded toxin-antitoxin pair having an extremely low dissociation constant. Moreover, compared to other dimerization systems, the barnase-barstar module provides the exact one-to-one ratio of the complex components and possesses high stability of each component in a complex and high solubility in aqueous solutions without self-aggregation. The unique properties of barnase and barstar allow the application of this pair for the engineering of different variants of targeted anticancer compounds and cytotoxic supramolecular complexes. Using barnase in suicide gene therapy has also found its niche in anticancer therapy. The application of barnase and barstar in contemporary experimental cancer therapy is reflected in the review.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ribonucleases/metabolismo , Bacillus/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/fisiologia , Humanos , Cinética , Modelos Moleculares , Nanotecnologia/métodos , Neoplasias/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Ribonucleases/antagonistas & inibidores , Ribonucleases/fisiologia
6.
Cancers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680384

RESUMO

Near-infrared phototherapy has great therapeutic potential for cancer treatment. However, for efficient application, in vivo photothermal agents should demonstrate excellent stability in blood and targeted delivery to pathological tissue. Here, we demonstrated that stable bovine serum albumin-coated gold mini nanorods conjugated to a HER2-specific designed ankyrin repeat protein, DARPin_9-29, selectively accumulate in HER2-positive xenograft tumors in mice and lead to a strong reduction in the tumor size when being illuminated with near-infrared light. The results pave the way for the development of novel DARPin-based targeted photothermal therapy of cancer.

7.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067057

RESUMO

Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.


Assuntos
Neoplasias/tratamento farmacológico , Toxinas Biológicas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Toxinas Biológicas/efeitos adversos
8.
Cancers (Basel) ; 12(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081407

RESUMO

We report here a combined anti-cancer therapy directed toward HER2 and EpCAM, common tumor-associated antigens of breast cancer cells. The combined therapeutic effect is achieved owing to two highly toxic proteins-a low immunogenic variant of Pseudomonas aeruginosa exotoxin A and ribonuclease Barnase from Bacillus amyloliquefaciens. The delivery of toxins to cancer cells was carried out by targeting designed ankyrin repeat proteins (DARPins). We have shown that both target agents efficiently accumulate in the tumor. Simultaneous treatment of breast carcinoma-bearing mice with anti-EpCAM fusion toxin based on LoPE and HER2-specific liposomes loaded with Barnase leads to concurrent elimination of primary tumor and metastases. Monotherapy with anti-HER2- or anti-EpCAM-toxins did not produce a comparable effect on metastases. The proposed approach can be considered as a promising strategy for significant improvement of cancer therapy.

9.
ACS Nano ; 14(10): 12781-12795, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32935975

RESUMO

When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Receptor ErbB-2
10.
J Stem Cells ; 6(4): 199-212, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23550338

RESUMO

Using mouse pluripotent teratocarcinoma PCC4azal cells and proliferating spleen lymphocytes we obtained a new type of hybrids, in which marker lymphocyte genes were suppressed, but expression the Oct-4 gene was not effected; the hybrid cells were able to differentiate to cardiomyocytes. In order to specify the environmental factors which may affect the genetic stability and other hybrid properties, we analyzed the total chromosome number and differentiation potencies of hybrids respectively to conditions of their cultivation. Particular attention was paid to the number and transcription activity of chromosomal nucleolus organizing regions (NORs), which harbor the most actively transcribed - ribosomal - genes. The results showed that the hybrids obtained are characterized by a relatively stable chromosome number which diminished less than in 5% during 27 passages. However, a long-term cultivation of hybrid cells in non-selective conditions resulted in preferential elimination of some NO- chromosomes, whereas the number of active NORs per cell was increased due to activation of latent NORs. On the contrary, in selective conditions, i.e. in the presence of hypoxantine, aminopterin and thymidine, the total number of NOR-bearing chromosomes was not changed, but a partial inactivation of remaining NORs was observed. The higher number of active NORs directly correlated with the capability of hybrid cells for differentiation to cardiomyocytes.


Assuntos
Técnicas de Cultura de Células/métodos , Instabilidade Cromossômica/genética , Células Híbridas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Instabilidade Cromossômica/efeitos dos fármacos , Cromossomos de Mamíferos/genética , Meios de Cultura/farmacologia , DNA Ribossômico/genética , Células Híbridas/efeitos dos fármacos , Células Híbridas/metabolismo , Hibridização Genética/efeitos dos fármacos , Hibridização in Situ Fluorescente , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Repetições de Microssatélites/genética , Região Organizadora do Nucléolo/genética , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase , Prata/metabolismo
11.
Biochem Biophys Res Commun ; 371(4): 860-5, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18468512

RESUMO

A novel 47-residue plant defensin was purified from germinated seeds of the lentil Lens culinaris by ammonium sulfate precipitation, gel filtration, chromatography, and RP-HPLC. The molecular mass (5440.41Da) and complete amino acid sequence (KTCENLSDSFKGPCIPDGNCNKHCKEKEHLLSGRCRDDFRCWCTRNC) of defensin, termed Lc-def, were determined. Lc-def has eight cysteines forming four disulfide bonds. The total RNA was isolated from lentil germinated seeds, RT-PCR and subsequent cloning were performed, and cDNA was sequenced. A 74-residue predefensin contains a putative signal peptide (27 amino acid) and a mature protein. Lc-def shows high sequence homology with legumes defensins, exhibits an activity against Aspergillus niger, but does not inhibit proteolytic enzymes.


Assuntos
Aspergillus niger/efeitos dos fármacos , Defensinas/química , Defensinas/farmacologia , Lens (Planta) , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Sementes , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Defensinas/isolamento & purificação , Lens (Planta)/genética , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Peptídeo Hidrolases/efeitos dos fármacos , Proteínas de Plantas/isolamento & purificação , Sinais Direcionadores de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Análise de Sequência de DNA , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA