Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39253473

RESUMO

Closed-loop, phase-specific neurostimulation is a powerful method to modulate ongoing brain activity for clinical and research applications. Phase-specific stimulation relies on estimating the phase of an ongoing oscillation in real time and issuing a control command at a target phase. Phase detection algorithms based on Fast Fourier transform (FFT) are widely used due to their computational efficiency and robustness. However, it is unclear how algorithm performance depends on the spectral properties of the input signal and how algorithm parameters can be optimized. We used offline simulation to evaluate the performance of three algorithms (endpoint-corrected Hilbert Transform, Hilbert Transform and phase mapping) on three rhythmic biological signals with distinct spectral properties (rodent hippocampal theta potential, human EEG alpha and human essential tremor). First, we found that algorithm performance was more strongly influenced by signal amplitude and frequency variation compared with signal to noise ratio. Second, our simulations showed that the size of the data window for phase estimation was critical for the performance of FFT-based algorithms, where the optimal data window corresponds to the period of the oscillation. We validated this prediction with real time phase detection of hippocampal theta oscillations in freely behaving rats performing spatial navigation. Our findings define the relationship between signal properties and algorithm performance and provide a convenient method for optimizing FFT-based phase detection algorithms.

2.
Hippocampus ; 32(7): 488-516, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35561083

RESUMO

Neurons and synapses manifest pronounced variability in the amount of plasticity induced by identical activity patterns. The mechanisms underlying such plasticity heterogeneity, which have been implicated in context-specific resource allocation during encoding, have remained unexplored. Here, we employed a systematic physiologically constrained parametric search to identify the cellular mechanisms behind plasticity heterogeneity in dentate gyrus granule cells. We used heterogeneous model populations to ensure that our conclusions were not biased by parametric choices in a single hand-tuned model. We found that each of intrinsic, synaptic, and structural heterogeneities independently yielded heterogeneities in synaptic plasticity profiles obtained with two different induction protocols. However, among the disparate forms of neural-circuit heterogeneities, our analyses demonstrated the dominance of neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in granule cells. We found that strong relationships between neuronal intrinsic excitability and plasticity emerged only when adult neurogenesis-induced heterogeneities in neural structure were accounted for. Importantly, our analyses showed that it was not imperative that the manifestation of neural-circuit heterogeneities must translate to heterogeneities in plasticity profiles. Specifically, despite the expression of heterogeneities in structural, synaptic, and intrinsic neuronal properties, similar plasticity profiles were attainable across all models through synergistic interactions among these heterogeneities. We assessed the parametric combinations required for the manifestation of such degeneracy in the expression of plasticity profiles. We found that immature cells showed physiological plasticity profiles despite receiving afferent inputs with weak synaptic strengths. Thus, the high intrinsic excitability of immature granule cells was sufficient to counterbalance their low excitatory drive in the expression of plasticity profile degeneracy. Together, our analyses demonstrate that disparate forms of neural-circuit heterogeneities could mechanistically drive plasticity heterogeneity, but also caution against treating neural-circuit heterogeneities as proxies for plasticity heterogeneity. Our study emphasizes the need for quantitatively characterizing the relationship between neural-circuit and plasticity heterogeneities across brain regions.


Assuntos
Giro Denteado , Neurogênese , Adulto , Giro Denteado/fisiologia , Humanos , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA