Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853866

RESUMO

Hypoxia-inducible factor 1α (HIF1α) is a master regulator of numerous biological processes under low oxygen tensions. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in primary cells remain elusive. Here, we show that HIF1α signaling is activated in several human primary vascular cells under ambient oxygen tensions, and in vascular smooth muscle cells (VSMCs) of normal human lung tissue, which contributed to a relative resistance to further enhancement of glycolytic activity in hypoxia. Mechanistically, aerobic HIFα activation is mediated by paracrine secretion of three branched chain α-ketoacids (BCKAs), which suppress prolyl hydroxylase domain-containing protein 2 (PHD2) activity via direct inhibition and via lactate dehydrogenase A (LDHA)-mediated generation of L-2-hydroxyglutarate (L2HG). Metabolic dysfunction induced by BCKAs was observed in the lungs of rats with pulmonary arterial hypertension (PAH) and in pulmonary artery smooth muscle cells (PASMCs) from idiopathic PAH patients. BCKA supplementation stimulated glycolytic activity and promoted a phenotypic switch to the synthetic phenotype in PASMCs of normal and PAH subjects. In summary, we identify BCKAs as novel signaling metabolites that activate HIF1α signaling in normoxia and that the BCKA-HIF1α pathway modulates VSMC function and may be relevant to pulmonary vascular pathobiology.

2.
J Thromb Haemost ; 22(3): 818-833, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029855

RESUMO

BACKGROUND: Activated platelets secrete platelet factor 4 (PF4), which contributes to viral pathogenesis. Recently, we reported the proviral role of PF4 in replication of closely related flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV). OBJECTIVES: This study aimed to investigate the detailed mechanism of PF4-mediated virus replication. METHODS: PF4-/- or wild-type (WT) mice were infected with JEV, and host defense mechanisms, including autophagic/interferon (IFN) responses, were assessed. WT mice were pretreated with the CXCR3 antagonist AMG487 that inhibits PF4:CXCR3 pathway. This pathway was tested in PF4-/- monocytes infected with DENV or in monocytes isolated from patients with DENV infection. RESULTS: PF4-/- mice infected with JEV showed reduced viral load and improved brain inflammation and survival. PF4-/- mice synthesized more IFN-α/ß with higher expression of phosphorylated IRF3 in the brain. PF4 treatment decreased IRF-3/7/9 and IFN-α/ß expression and suppressed autophagic LC3-II flux and lysosomal degradation of viral proteins in JEV-infected cells. PF4 increased the expression of P-mTOR, P-p38, and P-ULK1Ser757 and decreased expression of LC3-II. Decreased autophagosome-lysosome fusion in turn promoted DENV2 replication. The above processes were reversed by AMG487. Uninfected PF4-/- monocytes showed elevated LC3-II and autophagosome-lysosome fusion. Microglia of JEV-infected PF4-/- mice exhibited elevated LC3-II inversely related to viral load. Similarly, monocytes from PF4-/- mice showed reduced infection by DENV2. In patients with DENV infection, higher plasma PF4 and viral load were inversely correlated with LC3-II, LAMP-1, and lysosomal degradation of DENV-NS1 in monocytes during the febrile phase. CONCLUSION: These studies suggest that PF4 deficiency or inhibition of the PF4:CXCR3 pathway prevents JEV and DENV infection. The studies also highlight the PF4:CXCR3 axis as a potential target to develop treatment regimens against flaviviruses.


Assuntos
Dengue , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Pirimidinonas , Animais , Humanos , Camundongos , Acetamidas , Dengue/tratamento farmacológico , Dengue/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/tratamento farmacológico , Fatores Imunológicos , Fator Plaquetário 4 , Receptores CXCR3
3.
Biomater Adv ; 143: 213184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371969

RESUMO

Herein, we report redox responsive, colon cancer targeting poly(allylamine) (PA)/eudragit S-100 (EU) nanoparticles (PAEU NPs) (≈59 nm). These disulfide crosslinked PAEU NPs are developed via air oxidation of thiolated PA and thiolated EU, eliminating the need of any external crosslinking agent for dual drug delivery. PAEU NPs can effectively encapsulate both hydrophilic doxorubicin (DOX) and hydrophobic curcumin (Cur) drug with ≈85 % and ≈97 % encapsulation efficiency respectively. Here, the combination of drugs having different anticancer mechanism offers the possibility of developing nanosystem with enhanced anticancer efficacy. The developed PAEU NPs show good colloidal stability and low drug release under physiological conditions, while high DOX (≈98 %) and Cur (≈93 %) release is observed in reducing environment (10 mM GSH). Further, DOX and Cur loaded PAEU NPs exhibit higher cancer cell killing efficiency as compared to individual free drugs. In vivo biodistribution studies with Balb/C mice display the retention of PAEU NPs in the colon region up to 24 h presenting the developed approach as an efficient way for colorectal cancer therapy.


Assuntos
Alilamina , Neoplasias Colorretais , Curcumina , Nanopartículas , Camundongos , Animais , Distribuição Tecidual , Doxorrubicina/uso terapêutico , Oxirredução , Neoplasias Colorretais/tratamento farmacológico
5.
Biomater Adv ; 136: 212796, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929295

RESUMO

Inflammatory Bowel (IBD) is an umbrella term which includes Crohn's Disease (CD) and Ulcerative Colitis (UC). At present, therapies available for management of the UC includes, corticosteroid, immuno-suppressants and antibiotics are used for mild to moderate UC conditions which can cause nephrotoxicity, hepatotoxicity and cardiotoxicity. Hence, a novel therapeutic candidate having potent anti-inflammatory effect is urgently warranted for the management of UC. Melatonin has emerged as a potent anti-inflammatory agent. However, poor solubility limits its therapeutic potential. Therefore, colon targeted Eudragit-S-100 coated chitosan nanoparticles have been demonstrated to improve melatonin therapeutic efficacy. It was found that melatonin loaded chitosan and colon targeted chitosan nanoparticles had promising anti-inflammatory efficacy in terms of NO scavenging activity in an in-vitro LPS challenged macrophages. Also, colon targeted oral chitosan nano-formulation exhibited remarkable protection in an in vivo UC mice model by improving gross pathological parameters, histo-architectural protection, goblet cell depletion, and immune cells infiltration which can be extrapolated to clinical studies.


Assuntos
Quitosana , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Melatonina , Animais , Anti-Inflamatórios/farmacologia , Quitosana/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Melatonina/farmacologia , Camundongos
6.
EBioMedicine ; 73: 103672, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740102

RESUMO

BACKGROUND: Phospho-Akt1 (pAkt1) undergoes prolyl hydroxylation at Pro125 and Pro313 by the prolyl hydroxylase-2 (PHD2) in a reaction decarboxylating α-ketoglutarate (αKG). We investigated whether the αKG supplementation could inhibit Akt-mediated activation of platelets and monocytes, in vitro as well as in vivo, by augmenting PHD2 activity. METHODS: We treated platelets or monocytes isolated from healthy individuals with αKG in presence of agonists in vitro and assessed the signalling molecules including pAkt1. We supplemented mice with dietary αKG and estimated the functional responses of platelets and monocytes ex vivo. Further, we investigated the impact of dietary αKG on inflammation and thrombosis in lungs of mice either treated with thrombosis-inducing agent carrageenan or infected with SARS-CoV-2. FINDINGS: Octyl αKG supplementation to platelets promoted PHD2 activity through elevated intracellular αKG to succinate ratio, and reduced aggregation in vitro by suppressing pAkt1(Thr308). Augmented PHD2 activity was confirmed by increased hydroxylated-proline and enhanced binding of PHD2 to pAkt in αKG-treated platelets. Contrastingly, inhibitors of PHD2 significantly increased pAkt1 in platelets. Octyl-αKG followed similar mechanism in monocytes to inhibit cytokine secretion in vitro. Our data also describe a suppressed pAkt1 and reduced activation of platelets and leukocytes ex vivo from mice supplemented with dietary αKG, unaccompanied by alteration in their number. Dietary αKG significantly reduced clot formation and leukocyte accumulation in various organs including lungs of mice treated with thrombosis-inducing agent carrageenan. Importantly, in SARS-CoV-2 infected hamsters, we observed a significant rescue effect of dietary αKG on inflamed lungs with significantly reduced leukocyte accumulation, clot formation and viral load alongside down-modulation of pAkt in the lung of the infected animals. INTERPRETATION: Our study suggests that dietary αKG supplementation prevents Akt-driven maladies such as thrombosis and inflammation and rescues pathology of COVID19-infected lungs. FUNDING: Study was funded by the Department of Biotechnology (DBT), Govt. of India (grants: BT/PR22881 and BT/PR22985); and the Science and Engineering Research Board, Govt. of India (CRG/000092).


Assuntos
Ácidos Cetoglutáricos/uso terapêutico , Prolil Hidroxilases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/prevenção & controle , Animais , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/veterinária , COVID-19/virologia , Cricetinae , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Humanos , Ácidos Cetoglutáricos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Trombose/induzido quimicamente , Trombose/patologia , Trombose/veterinária
7.
Mol Aspects Med ; 81: 101000, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34294412

RESUMO

History of pandemics is dominated by viral infections and specifically respiratory viral diseases like influenza and COVID-19. Lower respiratory tract infection is the fourth leading cause of death worldwide. Crosstalk between resultant inflammation and hypoxic microenvironment may impair ventilatory response of lungs. This reduces arterial partial pressure of oxygen, termed as hypoxemia, which is observed in a section of patients with respiratory virus infections including SARS-CoV-2 (COVID-19). In this review, we describe the interplay between inflammation and hypoxic microenvironment in respiratory viral infection and its contribution to disease pathogenesis.


Assuntos
COVID-19 , Humanos , Hipóxia , Inflamação , Pandemias , SARS-CoV-2
8.
EBioMedicine ; 68: 103418, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34102396

RESUMO

BACKGROUND: We have previously described an evolutionarily selected Tibetan prolyl hydroxylase-2 (PHD2D4E;C127S) variant that degrades the hypoxia-inducible factor (HIFα) more efficiently and protects these highlanders from hypoxia-triggered elevation in haemoglobin concentration. High altitude is known to cause acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) in a section of rapidly ascending non-acclimatised lowlanders. These morbidities are often accompanied by inflammatory response and exposure to hypobaric hypoxia is presumed to be the principal causative agent. We have investigated whether PHD2D4E;C127S variant is associated with prevention of hypoxia-mediated inflammatory milieu in Tibetan highlanders and therefore identify a potential target to regulate inflammation. METHODS: We genotyped the Tibetans using DNA isolated from whole blood. Thereafter immunophenotying was performed on PBMCs from homozygous PHD2D4E;C127S and PHD2WT individuals using flow cytometry. RNA isolated from these individuals was used to evaluate the peripheral level of important transcripts associated with immune as well as hypoxia response employing the nCounter technology. The ex-vivo findings were validated by generating monocytic cell lines (U937 cell line) expressing PHD2D4E;C127S and PHD2WT variants post depletion of endogenous PHD2. We had also collected whole blood samples from healthy travellers and travellers afflicted with AMS and HAPE to evaluate the significance of our ex-vivo and in vitro findings. Hereafter, we also attempted to resolve hypoxia-triggered inflammation in vitro as well as in vivo by augmenting the function of PHD2 using alpha-ketoglutarate (αKG), a co-factor of PHD2. FINDINGS: We report that homozygous PHD2D4E;C127S highlanders harbour less inflammatory and patrolling monocytes in circulation as compared to Tibetan PHD2WT highlanders. In response to in vitro hypoxia, secretion of IL6 and IL1ß from PHD2D4E;C127S monocytes, and their chemotactic response compared to the PHD2WT are compromised, corresponding to the down-modulated expression of related signalling molecules RELA, JUN, STAT1, ATF2 and CXCR4. We verified these functional outcomes in monocytic U937 cell line engineered to express PHD2D4E;C127S and confirmed the down-modulation of the signalling molecules at protein level under hypoxia. In contrast, non-Tibetan sojourners with AMS and HAPE at high altitude (3,600 m above sea level) displayed significant increase in these inflammatory parameters. Our data henceforth underline the role of gain-of-function of PHD2 as the rate limiting factor to harness hyper-activation of monocytes in hypoxic environment. Therefore upon pre-treatment with αKG, we observed diminished inflammatory response of monocytes in vitro and reduction in leukocyte infiltration to the lungs in mice exposed to normobaric hypoxia. INTERPRETATION: Our report suggests that gain-of-function PHD2 D4E;C127S variant can therefore protect against inflammation elicited by hypobaric hypoxia. Augmentation of PHD2 activity therefore may be an important method to alleviate inflammatory response to inspired hypoxia. FUNDING: This study is supported by the Department of Biotechnology, Government of India.


Assuntos
Doença da Altitude/prevenção & controle , Mutação com Ganho de Função , Hipertensão Pulmonar/prevenção & controle , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Ácidos Cetoglutáricos/efeitos adversos , Adulto , Doença da Altitude/induzido quimicamente , Doença da Altitude/genética , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Imunofenotipagem , Masculino , Camundongos , Viagem , Células U937 , Adulto Jovem
9.
ACS Biomater Sci Eng ; 6(5): 3139-3153, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463265

RESUMO

Epigenetically regulated therapeutic intervention of cancer is an emerging era of research in the development of a promising therapy. Epigenetic changes are intrinsically reversible and providing the driving force to drug resistance in colorectal cancer (CRC). The regulation of polycomb group (PcG) proteins, BMI1 and EZH2, and the associated CRC progression hold promises for a novel treatment regime. The present study enlightens targeted photodynamic therapy (PDT) with potential photosensitizer hypericin nanocomposite in the development of epigenetic-based CRC therapy. We have synthesized hypericin-loaded transferrin nanoformulations (HTfNPs) overcoming the compromised hydrophobicity and poor bioavailability of the placebo drug. Targeted PDT with hypericin nanocomposite-induced BMI1 degradation assisted CRC retardation. In the present study, transferrin nanoparticles were reported to control the premature release of hypericin and improve its availability with better targeting at the disease site. Targeted intracellular internalization to colon cancer cells having a differential expression of transferrin receptors, in vivo biodistribution, stability, and pharmacokinetics provide promising applications in the nanodelivery system. Indeed, in vitro anticancer efficiency, cell cycle arrest at the G0/G1 phase, and elevated reactive oxygen species (ROS) generation confirm the anticancer effect of nanoformulation. In the exploration of mechanism, nanotherapeutic intervention by activation of PP2A, Caspase3 and inhibition of BMI1, EZH2, 3Pk, NFκB was evident. An exciting outcome of this study uncovered the camouflaged role of PP2A in the regulation of BMI1. PP2A mediates the ubiquitination/degradation of BMI1, which is revealed by changes in the physical interaction of PP2A and BMI1. Our study confirms the anticancer effect of HTfNP-assisted PDT by inducing PP2A-mediated BMI1 ubiquitination/degradation demonstrating an epigenetic-driven nanotherapeutic approach in CRC treatment.


Assuntos
Neoplasias Colorretais , Nanopartículas , Fotoquimioterapia , Antracenos , Neoplasias Colorretais/tratamento farmacológico , Humanos , Perileno/análogos & derivados , Distribuição Tecidual , Transferrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...