Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Am J Biol Anthropol ; : e24930, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581359

RESUMO

OBJECTIVES: Mildred Trotter was an anatomist and physical anthropologist whose studies on hair morphology, growth, somatic distribution, and trait relationships to age and ethnogeographic population were foundational to the field of microscopical hair analysis. The collection of human hair samples she assembled for her research has been an underutilized resource for studies on human hair variation. We applied updated methods and reviewed Trotter's original data to reassess the relationship hair traits have to diverse population labels. METHODS: Hair form and pigmentation patterns were measured from a subset of the hair samples accumulated by Trotter and we compared our data to Trotter's original results. Variability in hair traits were tested within individuals, within populations, and among ethnogeographic groups. RESULTS: Measured hair cross-section dimensions and melanosome density and distribution revealed substantial variability within individuals and ethnogeographic populations. Hair traits were found to not be distinctly separable by ancestry but instead showed continuous variation across human populations. Trotter's measurements were precise and the dataset she compiled remains valid, though the conclusions should be reviewed in light of our current understanding of human variation. DISCUSSION: Our findings support moving away from categorical ancestry classifications and eliminating the use of outdated racial typologies in favor of more descriptive trait analysis. Detailed analysis of trait pattern distributions are presented that may be useful for future research on human variation. We point to the need for additional research on human variation and hair trait relationships with reference to known population affinity.

2.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106188

RESUMO

Human craniofacial shape is highly variable yet highly heritable with genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the normal population. We compared three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores revealed a polygenic basis for normal facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples showed craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing new insights into the genetic intersection of complex traits and Mendelian disorders.

3.
Front Genet ; 14: 1286800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125750

RESUMO

Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups. Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.

4.
Nat Commun ; 14(1): 7436, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973980

RESUMO

The cranial vault in humans is highly variable, clinically relevant, and heritable, yet its genetic architecture remains poorly understood. Here, we conduct a joint multi-ancestry and admixed multivariate genome-wide association study on 3D cranial vault shape extracted from magnetic resonance images of 6772 children from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up analyses indicate that these loci overlap with genomic risk loci for sagittal craniosynostosis, show elevated activity cranial neural crest cells, are enriched for processes related to skeletal development, and are shared with the face and brain. We present supporting evidence of regional localization for several of the identified genes based on expression patterns in the cranial vault bones of E15.5 mice. Overall, our study provides a comprehensive overview of the genetics underlying normal-range cranial vault shape and its relevance for understanding modern human craniofacial diversity and the etiology of congenital malformations.


Assuntos
Craniossinostoses , Estudo de Associação Genômica Ampla , Criança , Humanos , Animais , Camundongos , Crânio/diagnóstico por imagem , Craniossinostoses/genética , Ossos Faciais , Encéfalo/diagnóstico por imagem
5.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37577588

RESUMO

SNP heritability (hsnp2) is defined as the proportion of phenotypic variance explained by genotyped SNPs and is believed to be a lower bound of heritability (h2), being equal to it if all causal variants are known. Despite the simple intuition behind hsnp2, its interpretation and equivalence to h2 is unclear, particularly in the presence of population structure and assortative mating. It is well known that population structure can lead to inflation in h/np2 estimates. Here we use analytical theory and simulations to demonstrate that hsnp2 estimated with genome-wide restricted maximum likelihood (GREML) can be biased in admixed populations, even in the absence of confounding and even if all causal variants are known. This is because admixture generates linkage disequilibrium (LD), which contributes to the genetic variance, and therefore to heritability. GREML implicitly assumes this component is zero, which may not be true, particularly for traits under divergent or stabilizing selection in the source populations, leading under- or over-estimates of hsnp2 relative to h2. For the same reason, GREML estimates of local ancestry heritability (hγ2) will also be biased. We describe the bias in h/np2 and h^γ2 as a function of admixture history and the genetic architecture of the trait and discuss its implications for genome-wide association and polygenic prediction.

6.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645810

RESUMO

A genome-wide association study (GWAS) of a complex, multi-dimensional morphological trait, such as the human face, typically relies on predefined and simplified phenotypic measurements, such as inter-landmark distances and angles. These measures are predominantly designed by human experts based on perceived biological or clinical knowledge. To avoid use handcrafted phenotypes (i.e., a priori expert-identified phenotypes), alternative automatically extracted phenotypic descriptors, such as features derived from dimension reduction techniques (e.g., principal component analysis), are employed. While the features generated by such computational algorithms capture the geometric variations of the biological shape, they are not necessarily genetically relevant. Therefore, genetically informed data-driven phenotyping is desirable. Here, we propose an approach where phenotyping is done through a data-driven optimization of trait heritability, defined as the degree of variation in a phenotypic trait in a population that is due to genetic variation. The resulting phenotyping process consists of two steps: 1) constructing a feature space that models shape variations using dimension reduction techniques, and 2) searching for directions in the feature space exhibiting high trait heritability using a genetic search algorithm (i.e., heuristic inspired by natural selection). We show that the phenotypes resulting from the proposed trait heritability-optimized training differ from those of principal components in the following aspects: 1) higher trait heritability, 2) higher SNP heritability, and 3) identification of the same number of independent genetic loci with a smaller number of effective traits. Our results demonstrate that data-driven trait heritability-based optimization enables the automatic extraction of genetically relevant phenotypes, as shown by their increased power in genome-wide association scans.

7.
Proc Natl Acad Sci U S A ; 120(24): e2301760120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279270

RESUMO

Humans are unique among mammals in having a functionally naked body with a hair-covered scalp. Scalp hair is exceptionally variable across populations within Homo sapiens. Neither the function of human scalp hair nor the consequences of variation in its morphology have been studied within an evolutionary framework. A thermoregulatory role for human scalp hair has been previously suggested. Here, we present experimental evidence on the potential evolutionary function of human scalp hair and variation in its morphology. Using a thermal manikin and human hair wigs at different wind speeds in a temperature and humidity-controlled environment, with and without simulated solar radiation, we collected data on the convective, radiative, and evaporative heat fluxes to and from the scalp in relation to properties of a range of hair morphologies, as well as a naked scalp. We find evidence for a significant reduction in solar radiation influx to the scalp in the presence of hair. Maximal evaporative heat loss potential from the scalp is reduced by the presence of hair, but the amount of sweat required on the scalp to balance the incoming solar heat (i.e., zero heat gain) is reduced in the presence of hair. Particularly, we find that hair that is more tightly curled offers increased protection against heat gain from solar radiation.


Assuntos
Regulação da Temperatura Corporal , Cabelo , Couro Cabeludo , Cabelo/anatomia & histologia , Cabelo/fisiologia , Regulação da Temperatura Corporal/fisiologia , Humanos , Evolução Biológica , Água , Vento , Energia Solar
8.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205363

RESUMO

Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these classes. NetMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.

9.
Sci Rep ; 13(1): 3708, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879022

RESUMO

Facial ancestry can be described as variation that exists in facial features that are shared amongst members of a population due to environmental and genetic effects. Even within Europe, faces vary among subregions and may lead to confounding in genetic association studies if unaccounted for. Genetic studies use genetic principal components (PCs) to describe facial ancestry to circumvent this issue. Yet the phenotypic effect of these genetic PCs on the face has yet to be described, and phenotype-based alternatives compared. In anthropological studies, consensus faces are utilized as they depict a phenotypic, not genetic, ancestry effect. In this study, we explored the effects of regional differences on facial ancestry in 744 Europeans using genetic and anthropological approaches. Both showed similar ancestry effects between subgroups, localized mainly to the forehead, nose, and chin. Consensus faces explained the variation seen in only the first three genetic PCs, differing more in magnitude than shape change. Here we show only minor differences between the two methods and discuss a combined approach as a possible alternative for facial scan correction that is less cohort dependent, more replicable, non-linear, and can be made open access for use across research groups, enhancing future studies in this field.


Assuntos
Antropologia , Testa , Queixo , Consenso , Europa (Continente)
10.
J Anat ; 243(2): 274-283, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36943032

RESUMO

The effects of sex on human facial morphology have been widely documented. Because sexual dimorphism is relevant to a variety of scientific and applied disciplines, it is imperative to have a complete and accurate account of how and where male and female faces differ. We apply a comprehensive facial phenotyping strategy to a large set of existing 3D facial surface images. We investigate facial sexual dimorphism in terms of size, shape, and shape variance. We also assess the ability to correctly assign sex based on shape, both for the whole face and for subregions. We applied a predefined data-driven segmentation to partition the 3D facial surfaces of 2446 adults into 63 hierarchically linked regions, ranging from global (whole face) to highly localized subparts. Each facial region was then analyzed with spatially dense geometric morphometrics. To describe the major modes of shape variation, principal components analysis was applied to the Procrustes aligned 3D points comprising each of the 63 facial regions. Both nonparametric and permutation-based statistics were then used to quantify the facial size and shape differences and visualizations were generated. Males were significantly larger than females for all 63 facial regions. Statistically significant sex differences in shape were also seen in all regions and the effects tended to be more pronounced for the upper lip and forehead, with more subtle changes emerging as the facial regions became more granular. Males also showed greater levels of shape variance, with the largest effect observed for the central forehead. Classification accuracy was highest for the full face (97%), while most facial regions showed an accuracy of 75% or greater. In summary, sex differences in both size and shape were present across every part of the face. By breaking the face into subparts, some shape differences emerged that were not apparent when analyzing the face as a whole. The increase in facial shape variance suggests possible evolutionary origins and may offer insights for understanding congenital facial malformations. Our classification results indicate that a high degree of accuracy is possible with only parts of the face, which may have implications for biometrics applications.


Assuntos
Face , Lábio , Adulto , Humanos , Feminino , Masculino , Face/anatomia & histologia , Lábio/anatomia & histologia , Imageamento Tridimensional/métodos , Caracteres Sexuais
11.
Sci Rep ; 13(1): 2612, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788253

RESUMO

Analysis of population structure and genomic ancestry remains an important topic in human genetics and bioinformatics. Commonly used methods require high-quality genotype data to ensure accurate inference. However, in practice, laboratory artifacts and outliers are often present in the data. Moreover, existing methods are typically affected by the presence of related individuals in the dataset. In this work, we propose a novel hybrid method, called SAE-IBS, which combines the strengths of traditional matrix decomposition-based (e.g., principal component analysis) and more recent neural network-based (e.g., autoencoders) solutions. Namely, it yields an orthogonal latent space enhancing dimensionality selection while learning non-linear transformations. The proposed approach achieves higher accuracy than existing methods for projecting poor quality target samples (genotyping errors and missing data) onto a reference ancestry space and generates a robust ancestry space in the presence of relatedness. We introduce a new approach and an accompanying open-source program for robust ancestry inference in the presence of missing data, genotyping errors, and relatedness. The obtained ancestry space allows for non-linear projections and exhibits orthogonality with clearly separable population groups.


Assuntos
Genética Populacional , Redes Neurais de Computação , Humanos , Genótipo , Análise de Componente Principal
12.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36726304

RESUMO

To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican populations' immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in immune response. Our results shed light on past selective events influencing the host response to modern diseases, both pathogenic infection as well as autoimmune disorders.


Assuntos
Doenças Transmissíveis , Genômica , Humanos , Genoma , Seleção Genética , Doenças Transmissíveis/genética
13.
IEEE Trans Biom Behav Identity Sci ; 4(2): 163-172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36338273

RESUMO

Face recognition is a widely accepted biometric identifier, as the face contains a lot of information about the identity of a person. The goal of this study is to match the 3D face of an individual to a set of demographic properties (sex, age, BMI, and genomic background) that are extracted from unidentified genetic material. We introduce a triplet loss metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. The metric learner is trained for multiple facial segments to allow a global-to-local part-based analysis of the face. To learn directly from 3D mesh data, spiral convolutions are used along with a novel mesh-sampling scheme, which retains uniformly sampled points at different resolutions. The capacity of the model for establishing identity from facial shape against a list of probe demographics is evaluated by enrolling the embeddings for all properties into a support vector machine classifier or regressor and then combining them using a naive Bayes score fuser. Results obtained by a 10-fold cross-validation for biometric verification and identification show that part-based learning significantly improves the systems performance for both encoding with our geometric metric learner or with principal component analysis.

14.
Annu Rev Genomics Hum Genet ; 23: 383-412, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35483406

RESUMO

Variations in the form of the human face, which plays a role in our individual identities and societal interactions, have fascinated scientists and artists alike. Here, we review our current understanding of the genetics underlying variation in craniofacial morphology and disease-associated dysmorphology, synthesizing decades of progress on Mendelian syndromes in addition to more recent results from genome-wide association studies of human facial shape and disease risk. We also discuss the various approaches used to phenotype and quantify facial shape, which are of particular importance due to the complex, multipartite nature of the craniofacial form. We close by discussing how experimental studies have contributed and will further contribute to our understanding of human genetic variation and then proposing future directions and applications for the field.


Assuntos
Estudo de Associação Genômica Ampla , Humanos , Fenótipo
15.
Behav Anal Pract ; 14(4): 1144-1156, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34868818

RESUMO

A stimulus preference assessment (SPA) is a fundamental tool used by practitioners to predict stimuli that function as reinforcers. The Behavior Analyst Certification Board (BACB) requires that all certified behavior analysts and behavioral technicians be trained in SPA methodology (BACB, 2017). SPA procedures are used by nearly 9 out of 10 behavior analysts in the field (Graff & Karsten, 2012). Over the last 4 decades, there has been a litany of research on SPA procedures. Despite the universality of training, application, and research, discussions on the selection of SPA procedures have been sparse. Two peer-reviewed articles have focused on clinical decision making in the selection of SPA procedures. Karsten et al. (2011) introduced an in situ decision-making model, whereas Virues-Ortega et al. (2014) developed an a priori algorithm based on client and stimuli characteristics. The SPADS addresses the limitations of prior models by considering the effects of stimuli dimensions, client characteristics, relative administration times, and the outcomes agreement between two potentially efficacious, context-specfic SPA procedures.

16.
PLoS Genet ; 17(8): e1009695, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411106

RESUMO

Facial morphology is highly variable, both within and among human populations, and a sizable portion of this variation is attributable to genetics. Previous genome scans have revealed more than 100 genetic loci associated with different aspects of normal-range facial variation. Most of these loci have been detected in Europeans, with few studies focusing on other ancestral groups. Consequently, the degree to which facial traits share a common genetic basis across diverse sets of humans remains largely unknown. We therefore investigated the genetic basis of facial morphology in an East African cohort. We applied an open-ended data-driven phenotyping approach to a sample of 2,595 3D facial images collected on Tanzanian children. This approach segments the face into hierarchically arranged, multivariate features that capture the shape variation after adjusting for age, sex, height, weight, facial size and population stratification. Genome scans of these multivariate shape phenotypes revealed significant (p < 2.5 × 10-8) signals at 20 loci, which were enriched for active chromatin elements in human cranial neural crest cells and embryonic craniofacial tissue, consistent with an early developmental origin of the facial variation. Two of these associations were in highly conserved regions showing craniofacial-specific enhancer activity during embryological development (5q31.1 and 12q21.31). Six of the 20 loci surpassed a stricter threshold accounting for multiple phenotypes with study-wide significance (p < 6.25 × 10-10). Cross-population comparisons indicated 10 association signals were shared with Europeans (seven sharing the same associated SNP), and facilitated fine-mapping of causal variants at previously reported loci. Taken together, these results may point to both shared and population-specific components to the genetic architecture of facial variation.


Assuntos
População Negra/genética , Face/anatomia & histologia , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , População Branca/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Polimorfismo de Nucleotídeo Único , Tanzânia , Adulto Jovem
17.
Sci Rep ; 11(1): 11535, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075066

RESUMO

Quantifying the continuous variation in human scalp hair morphology is of interest to anthropologists, geneticists, dermatologists and forensic scientists, but existing methods for studying hair form are time-consuming and not widely used. Here, we present a high-throughput sample preparation protocol for the imaging of both longitudinal (curvature) and cross-sectional scalp hair morphology. Additionally, we describe and validate a new Python package designed to process longitudinal and cross-sectional hair images, segment them, and provide measurements of interest. Lastly, we apply our methods to an admixed African-European sample (n = 140), demonstrating the benefit of quantifying hair morphology over classification, and providing evidence that the relationship between cross-sectional morphology and curvature may be an artefact of population stratification rather than a causal link.


Assuntos
Cabelo/anatomia & histologia , Processamento de Imagem Assistida por Computador , Couro Cabeludo , Estudos Transversais , Humanos
18.
Sci Rep ; 11(1): 12175, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108542

RESUMO

Craniofacial dysmorphism is associated with thousands of genetic and environmental disorders. Delineation of salient facial characteristics can guide clinicians towards a correct clinical diagnosis and understanding the pathogenesis of the disorder. Abnormal facial shape might require craniofacial surgical intervention, with the restoration of normal shape an important surgical outcome. Facial anthropometric growth curves or standards of single inter-landmark measurements have traditionally supported assessments of normal and abnormal facial shape, for both clinical and research applications. However, these fail to capture the full complexity of facial shape. With the increasing availability of 3D photographs, methods of assessment that take advantage of the rich information contained in such images are needed. In this article we derive and present open-source three-dimensional (3D) growth curves of the human face. These are sequences of age and sex-specific expected 3D facial shapes and statistical models of the variation around the expected shape, derived from 5443 3D images. We demonstrate the use of these growth curves for assessing patients and show that they identify normal and abnormal facial morphology independent from age-specific facial features. 3D growth curves can facilitate use of state-of-the-art 3D facial shape assessment by the broader clinical and biomedical research community. This advance in phenotype description will support clinical diagnosis and the understanding of disease pathogenesis including genotype-phenotype relations.


Assuntos
Anormalidades Múltiplas/patologia , Anormalidades Craniofaciais/patologia , Face/patologia , Imageamento Tridimensional/métodos , Modelos Estatísticos , Atrofia Muscular/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropometria , Estudos de Casos e Controles , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Face/anormalidades , Feminino , Seguimentos , Gráficos de Crescimento , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fenótipo , Prognóstico , Adulto Jovem
19.
PLoS Genet ; 17(5): e1009528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983923

RESUMO

The analysis of contemporary genomic data typically operates on one-dimensional phenotypic measurements (e.g. standing height). Here we report on a data-driven, family-informed strategy to facial phenotyping that searches for biologically relevant traits and reduces multivariate 3D facial shape variability into amendable univariate measurements, while preserving its structurally complex nature. We performed a biometric identification of siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent quantification and analyses in an independent European cohort (n = 8,246) demonstrated significant heritability for a subset of traits (0.17-0.53) and highlighted 218 genome-wide significant loci (38 also study-wide) associated with facial variation shared by siblings. These loci showed preferential enrichment for active chromatin marks in cranial neural crest cells and embryonic craniofacial tissues and several regions harbor putative craniofacial genes, thereby enhancing our knowledge on the genetic architecture of normal-range facial variation.


Assuntos
Identificação Biométrica , Face/anatomia & histologia , Genômica , Imageamento Tridimensional , Herança Multifatorial/genética , Fenótipo , Irmãos , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/genética , Conjuntos de Dados como Assunto , Europa (Continente)/etnologia , Face/anormalidades , Face/embriologia , Feminino , Estudos de Associação Genética , Humanos , Masculino , População Branca/genética
20.
Nat Genet ; 53(6): 830-839, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821002

RESUMO

Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.


Assuntos
Encéfalo/anatomia & histologia , Face/anatomia & histologia , Padrões de Herança/genética , Adulto , Idoso , Comportamento , Cognição , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/genética , Pessoa de Meia-Idade , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...