Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621296

RESUMO

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Compostos Organofosforados , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Camundongos , Butirilcolinesterase/metabolismo , Compostos Organofosforados/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Indolquinonas/farmacologia
2.
Front Oncol ; 14: 1276092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380370

RESUMO

Introduction: Resistance to drug therapies is associated with a large majority of cancer-related deaths. ATP-binding cassette (ABC) transporter-mediated drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), glutathione (GSH), senescence, and vacuole-type ATPase (V-ATPase) all contribute to the resistance. We recently showed that extracellular ATP (eATP) induces and regulates EMT, CSC formation, and ABC transporters in human cancer cells and tumors. eATP also consistently upregulates Stanniocalcin-1 (STC1), a gene that significantly contributes to EMT, CSC formation, and tumor growth. We also found that eATP enhances drug resistance in cancer cells through eATP internalization mediated by macropinocytosis, leading to an elevation of intracellular ATP (iATP) levels, induction of EMT, and CSC formation. However, these factors have never been systematically investigated in the context of eATP-induced drug resistance. Methods: In this study, we hypothesized that eATP increases drug resistance via inducing ABC efflux, EMT, CSCs, STC1, and their accompanied processes such as GSH reducing activity, senescence, and V-ATPase. RNA sequencing, metabolomics, gene knockdown and knockout, and functional assays were performed to investigate these pathways and processes. Results and discussion: Our study results showed that, in multiple human cancer lines, eATP induced genes involved in drug resistance, elevated ABC transporters' efflux activity of anticancer drugs; generated transcriptomic and metabolic profiles representing a drug resistant state; upregulated activities of GSH, senescence, and V-ATPase to promote drug resistance. Collectively, these newly found players shed light on the mechanisms of eATP-induced as well as STC1- and V-ATPase-mediated drug resistance and offer potential novel targets for combating drug resistance in cancers.

3.
Chem Res Toxicol ; 36(9): 1451-1455, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37650603

RESUMO

CYP2C19 is an important enzyme for organophosphate pesticide (OPP) metabolism. Because the OPPs can be both substrates and inhibitors of CYP2C19, we screened 45 OPPs for their ability to inhibit the activity of this enzyme and investigated the role of CYP2C19 in the metabolism of 22 of these molecules. We identified several nanomolar inhibitors of CYP2C19 as well as determined that thions, in general, are more potent inhibitors than oxons. We also determined that thions are readily metabolized by CYP2C19, although we saw no relationship between IC50 values and intrinsic clearance rates. This study may have implications for mitigating the risk of OPP poisoning.


Assuntos
Organofosfatos , Praguicidas , Humanos , Citocromo P-450 CYP2C19 , Praguicidas/toxicidade
4.
J Med Chem ; 66(14): 10010-10026, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37436184

RESUMO

The genetic disorder glucose transporter type 1 deficiency syndrome (GLUT1-DS) heavily affects the main intake of energy in tissues and determines the most relevant outcomes at the central nervous system (CNS) district, which is highly dependent on glucose. Herein, we report the design and development of a set of compounds bearing the glucosyl and galactosyl moieties. We assessed their ability to enhance the GLUT1 mediated glucose intake in non-small-cell lung cancer (NSCLC) cells and to inhibit the carbonic anhydrase (CA; EC 4.2.1.1) isoforms implicated in the physiopathology of uncontrolled seizures associated to epilepsy (i.e., I, II, IV, VA, VB, and XII). The binding mode of 8 in adduct with hCA II was determined by X-ray crystallography. Among the selected derivatives, compound 4b proved effective in suppressing the occurrence of uncontrolled seizures on the in vivo induced maximal electroshock (MES) model and thus gives sustainment of an unprecedently reported pharmacological approach for the management of GLUT1-DS associated diseases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Transportador de Glucose Tipo 1 , Inibidores da Anidrase Carbônica/farmacologia , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade , Anidrase Carbônica IX
5.
Front Oncol ; 12: 912065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847855

RESUMO

We and others previously showed that extracellular ATP (eATP) is implicated in epithelial mesenchymal transition (EMT). However, the mechanisms by which eATP induces EMT and ATP's relationship to TGF-ß, a well-known EMT inducer, are largely unclear. Also, eATP-induced EMT has never been studied at transcriptomic and metabolomics levels. Based on our previous studies, we hypothesized that eATP acts as a specific inducer and regulator of EMT at all levels in cancer cells. RNAseq and metabolomics analyses were performed on human non-small cell lung cancer (NSCLC) A549 cells treated with either eATP or TGF-ß. Bio-functional assays, such as invasion, intracellular ATP, cell proliferation, cytoskeleton remodeling, and others were conducted in NSCLC A549 and H1299 cells to validate changes observed from RNAseq and metabolomics studies. In the RNAseq study, eATP significantly enriched expressions of genes involved in EMT similarly to TGF-ß after 2 and 6 hours of treatment. Samples treated with eATP for 2 hours share 131 upregulated EMT genes with those of TGF-ß treated samples, and 42 genes at 6 hours treatment. Eleven genes, with known or unknown functions in EMT, are significantly upregulated by both inducers at both time points, have been identified. BLOC1S6, one of the 11 genes, was selected for further study. eATP induced numerous EMT-related changes in metabolic pathways, including cytoskeleton rearrangement, glycolysis, glutaminolysis, ROS, and individual metabolic changes similar to those induced by TGF-ß. Functional bioassays verified the findings from RNAseq and metabolomics that eATP EMT-like changes in A549 and H1299 cells similarly to TGF-ß. BLOC1S6 was found to be implicated in EMT. In these studies, eATP-induced EMT, at all levels examined, is similar but non-identical to that induced by TGF-ß, and functions in such a way that exogenous addition of TGF-ß is unnecessary for the induction. The study of BLOC1S6 further verified its potential roles in EMT and the RNAseq analysis results. All these strongly indicate that eATP is a multi-functional and multi-locational inducer and regulator of EMT, changing our thinking on how EMT is induced and regulated and pointing to new directions for inhibiting EMT in cancer.

6.
J Vis Exp ; (172)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34279488

RESUMO

Adenosine triphosphate (ATP), including extracellular ATP (eATP), has been shown to play significant roles in various aspects of tumorigenesis, such as drug resistance, epithelial-mesenchymal transition (EMT), and metastasis. Intratumoral eATP is 103 to 104 times higher in concentration than in normal tissues. While eATP functions as a messenger to activate purinergic signaling for EMT induction, it is also internalized by cancer cells through upregulated macropinocytosis, a specific type of endocytosis, to perform a wide variety of biological functions. These functions include providing energy to ATP-requiring biochemical reactions, donating phosphate groups during signal transduction, and facilitating or accelerating gene expression as a transcriptional cofactor. ATP is readily available, and its study in cancer and other fields will undoubtedly increase. However, eATP study remains at an early stage, and unresolved questions remain unanswered before the important and versatile activities played by eATP and internalized intracellular ATP can be fully unraveled. These authors' laboratories' contributions to these early eATP studies include microscopic imaging of non-hydrolysable fluorescent ATP, coupled with high- and low-molecular weight fluorescent dextrans, which serve as macropinocytosis and endocytosis tracers, as well as various endocytosis inhibitors, to monitor and characterize the eATP internalization process. This imaging modality was applied to tumor cell lines and to immunodeficient mice, xenografted with human cancer tumors, to study eATP internalization in vitro and in vivo. This paper describes these in vitro and in vivo protocols, with an emphasis on modifying and finetuning assay conditions so that the macropinocytosis-/endocytosis-mediated eATP internalization assays can be successfully performed in different systems.


Assuntos
Trifosfato de Adenosina , Pinocitose , Animais , Linhagem Celular Tumoral , Endocitose , Humanos , Camundongos , Microscopia de Fluorescência
7.
Diabetes Metab Syndr Obes ; 14: 759-772, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33658814

RESUMO

PURPOSE: Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion. METHODS: Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca2+]i using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis. RESULTS: Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca2+]i of INS-1832/13 cells were diminished after the compound treatment. CONCLUSION: The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca2+]i and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.

8.
Cancer Metab ; 9(1): 14, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771231

RESUMO

BACKGROUND: Cancer cells drastically increase the uptake of glucose and glucose metabolism by overexpressing class I glucose transporters (GLUT1-4) to meet their energy and biomass synthesis needs and are very sensitive and vulnerable to glucose deprivation. Although targeting glucose uptake via GLUTs has been an attractive anticancer strategy, the relative anticancer efficacy of multi-GLUT targeting or single GLUT targeting is unclear. Here, we report DRB18, a synthetic small molecule, is a potent anticancer compound whose pan-class I GLUT inhibition is superior to single GLUT targeting. METHODS: Glucose uptake and MTT/resazurin assays were used to measure DRB18's inhibitory activities of glucose transport and cell viability/proliferation in human lung cancer and other cancer cell lines. Four HEK293 cell lines expressing GLUT1-4 individually were used to determine the IC50 values of DRB18's inhibitory activity of glucose transport. Docking studies were performed to investigate the potential direct interaction of DRB18 with GLUT1-4. Metabolomics analysis was performed to identify metabolite changes in A549 lung cancer cells treated with DRB18. DRB18 was used to treat A549 tumor-bearing nude mice. The GLUT1 gene was knocked out to determine how the KO of the gene affected tumor growth. RESULTS: DRB18 reduced glucose uptake mediated via each of GLUT1-4 with different IC50s, which match with the docking glidescores with a correlation coefficient of 0.858. Metabolomics analysis revealed that DRB18 altered energy-related metabolism in A549 cells by changing the abundance of metabolites in glucose-related pathways in vitro and in vivo. DRB18 eventually led to G1/S phase arrest and increased oxidative stress and necrotic cell death. IP injection of DRB18 in A549 tumor-bearing nude mice at 10 mg/kg body weight thrice a week led to a significant reduction in the tumor volume compared with mock-treated tumors. In contrast, the knockout of the GLUT1 gene did not reduce tumor volume. CONCLUSIONS: DRB18 is a potent pan-class I GLUT inhibitor in vitro and in vivo in cancer cells. Mechanistically, it is likely to bind the outward open conformation of GLUT1-4, reducing tumor growth through inhibiting GLUT1-4-mediated glucose transport and metabolisms. Pan-class I GLUT inhibition is a better strategy than single GLUT targeting for inhibiting tumor growth.

9.
Bioorg Med Chem Lett ; 30(18): 127406, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736210

RESUMO

Glucose transporters (GLUTs) facilitate glucose uptake and are overexpressed in most cancer cells. Inhibition of glucose transport has been shown to be an effective method to slow the growth of cancer cells both in vitro and in vivo. We have previously reported on the anticancer activity of an ester derived glucose uptake inhibitor. Due to the hydrolytic instability of the ester linkage we have prepared a series of isosteres of the ester moiety. Of all of the isosteres prepared, the amine linkage showed the most promise. Several additional analogues of the amine-linked compounds were also prepared to improve the overall activity.


Assuntos
Antineoplásicos/síntese química , Ésteres/síntese química , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Glucose/metabolismo , Amidas/química , Aminas/química , Antineoplásicos/farmacologia , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Ácidos Ftálicos/química , Relação Estrutura-Atividade , Sulfonas/química , Sulfóxidos/química
10.
J Nat Prod ; 83(3): 638-648, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32096998

RESUMO

(+)-Digoxin (1) is a well-known cardiac glycoside long used to treat congestive heart failure and found more recently to show anticancer activity. Several known cardenolides (2-5) and two new analogues, (+)-8(9)-ß-anhydrodigoxigenin (6) and (+)-17-epi-20,22-dihydro-21α-hydroxydigoxin (7), were synthesized from 1 and evaluated for their cytotoxicity toward a small panel of human cancer cell lines. A preliminary structure-activity relationship investigation conducted indicated that the C-12 and C-14 hydroxy groups and the C-17 unsaturated lactone unit are important for 1 to mediate its cytotoxicity toward human cancer cells, but the C-3 glycosyl residue seems to be less critical for such an effect. Molecular docking profiles showed that the cytotoxic 1 and the noncytotoxic derivative 7 bind differentially to Na+/K+-ATPase. The HO-12ß, HO-14ß, and HO-3'aα hydroxy groups of (+)-digoxin (1) may form hydrogen bonds with the side-chains of Asp121 and Asn122, Thr797, and Arg880 of Na+/K+-ATPase, respectively, but the altered lactone unit of 7 results in a rotation of its steroid core, which depotentiates the binding between this compound and Na+/K+-ATPase. Thus, 1 was found to inhibit Na+/K+-ATPase, but 7 did not. In addition, the cytotoxic 1 did not affect glucose uptake in human cancer cells, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.


Assuntos
Antineoplásicos/farmacologia , Cardenolídeos/farmacologia , Digoxina/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Cardenolídeos/síntese química , Linhagem Celular Tumoral , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 28(4): 115301, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31953129

RESUMO

A new non-cytotoxic [(+)-17ß-hydroxystrebloside (1)] and two known cytotoxic [(+)-3'-de-O-methylkamaloside (2) and (+)-strebloside (3)] cardiac glycosides were isolated and identified from the combined flowers, leaves, and twigs of Streblus asper collected in Vietnam, with the absolute configuration of 1 established from analysis of its ECD and NMR spectroscopic data and confirmed by computational ECD calculations. A new 14,21-epoxycardanolide (3a) was synthesized from 3 that was treated with base. A preliminary structure-activity relationship study indicated that the C-14 hydroxy group and the C-17 lactone unit and the established conformation are important for the mediation of the cytotoxicity of 3. Molecular docking profiles showed that the cytotoxic 3 and its non-cytotoxic analogue 1 bind differentially to Na+/K+-ATPase. Compound 3 docks deeply in the Na+/K+-ATPase pocket with a sole pose, and its C-10 formyl and C-5, C-14, and C-4' hydroxy groups may form hydrogen bonds with the side-chains of Glu111, Glu117, Thr797, and Arg880 of Na+/K+-ATPase, respectively. However, 1 fits the cation binding sites with at least three different poses, which all depotentiate the binding between 1 and Na+/K+-ATPase. Thus, 3 was found to inhibit Na+/K+-ATPase, but 1 did not. In addition, the cytotoxic and Na+/K+-ATPase inhibitory 3 did not affect glucose uptake in human lung cancer cells, against which it showed potent activity, indicating that this cardiac glycoside mediates its cytotoxicity by targeting Na+/K+-ATPase but not by interacting with glucose transporters.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glicosídeos Cardíacos/farmacologia , Inibidores Enzimáticos/farmacologia , Moraceae/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flores/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Folhas de Planta/química , Caules de Planta/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Relação Estrutura-Atividade
12.
Phytother Res ; 34(5): 1027-1040, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31823431

RESUMO

Glucose, a key nutrient utilized by human cells to provide cellular energy and a carbon source for biomass synthesis, is internalized in cells via glucose transporters that regulate glucose homeostasis throughout the human body. Glucose transporters have been used as important targets for the discovery of new drugs to treat cancer, diabetes, and heart disease, owing to their abnormal expression during these disease conditions. Thus far, several glucose transport inhibitors have been used in clinical trials, and increasing numbers of natural products have been characterized as potential anticancer agents targeting glucose transport. The present review focuses on natural product glucose transport inhibitors of plant origin, including alkaloids, flavonoids and other phenolic compounds, and isoprenoids, with their potential antitumor properties also discussed.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Neoplasias/tratamento farmacológico , Plantas/química , Antineoplásicos/farmacologia , Humanos
13.
Oncotarget ; 8(50): 87860-87877, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152126

RESUMO

Cancer cells are able to uptake extracellular ATP (eATP) via macropinocytosis to elevate intracellular ATP (iATP) levels, enhancing their survival in drug treatment. However, the involved drug resistance mechanisms are unknown. Here we investigated the roles of eATP as either an energy or a phosphorylating molecule in general drug resistance mediated by ATP internalization and iATP elevation. We report that eATP increased iATP levels and promoted drug resistance to various tyrosine kinase inhibitors (TKIs) and chemo-drugs in human cancer cell lines of five cancer types. In A549 lung cancer cells, the resistance was downregulated by macropinocytosis inhibition or siRNA knockdown of PAK1, an essential macropinocytosis enzyme. The elevated iATP upregulated the efflux activity of ABC transporters in A549 and SK-Hep-1 cells as well as phosphorylation of PDGFRα and proteins in the PDGFR-mediated Akt-mTOR and Raf-MEK signaling pathways in A549 cells. Similar phosphorylation upregulations were found in A549 tumors. These results demonstrate that eATP induces different types of drug resistance by eATP internalization and iATP elevation, implicating the ATP-rich tumor microenvironment in cancer drug resistance, expanding our understanding of the roles of eATP in the Warburg effect and offering new anticancer drug resistance targets.

14.
J Nat Prod ; 80(3): 648-658, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-27983842

RESUMO

Three new (1-3) and two known (4 and 5) cytotoxic cardiac glycosides were isolated and characterized from a medicinal plant, Streblus asper Lour. (Moraceae), collected in Vietnam, with six new analogues and one known derivative (5a-g) synthesized from (+)-strebloside (5). A preliminary structure-activity relationship study indicated that the C-10 formyl and C-5 and C-14 hydroxy groups and C-3 sugar unit play important roles in the mediation of the cytotoxicity of (+)-strebloside (5) against HT-29 human colon cancer cells. When evaluated in NCr nu/nu mice implanted intraperitoneally with hollow fibers facilitated with either MDA-MB-231 human breast or OVCAR3 human ovarian cancer cells, (+)-strebloside (5) showed significant cell growth inhibitory activity in both cases, in the dose range 5-30 mg/kg.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Glicosídeos Cardíacos/isolamento & purificação , Glicosídeos Cardíacos/farmacologia , Moraceae/química , Animais , Antineoplásicos Fitogênicos/química , Glicosídeos Cardíacos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Plantas Medicinais , Relação Estrutura-Atividade , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...