Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766057

RESUMO

Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.

2.
Curr Biol ; 32(14): 3110-3120.e6, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35793680

RESUMO

In the mouse visual system, multiple types of retinal ganglion cells (RGCs) each encode distinct features of the visual space. A clear understanding of how this information is parsed in their downstream target, the dorsal lateral geniculate nucleus (dLGN), remains elusive. Here, we characterized retinogeniculate connectivity in Cart-IRES2-Cre-D and BD-CreER2 mice, which labels subsets of on-off direction-selective ganglion cells (ooDSGCs) tuned to the vertical directions and to only ventral motion, respectively. Our immunohistochemical, electrophysiological, and optogenetic experiments reveal that only a small fraction (<15%) of thalamocortical (TC) neurons in the dLGN receives primary retinal drive from these subtypes of ooDSGCs. The majority of the functionally identifiable ooDSGC inputs in the dLGN are weak and converge together with inputs from other RGC types. Yet our modeling indicates that this mixing is not random: BD-CreER+ ooDSGC inputs converge less frequently with ooDSGCs tuned to the opposite direction than with non-CART-Cre+ RGC types. Taken together, these results indicate that convergence of distinct information lines in dLGN follows specific rules of organization.


Assuntos
Corpos Geniculados , Vias Visuais , Animais , Corpos Geniculados/fisiologia , Camundongos , Retina , Células Ganglionares da Retina/fisiologia , Tálamo , Vias Visuais/fisiologia
3.
Cornea ; 39(9): 1145-1150, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32452990

RESUMO

PURPOSE: In humans, loss-of-function mutations in the gene encoding Chordin-like 1 (CHRDL1) cause X-linked megalocornea (MGC1), characterized by bilateral corneal enlargement, decreased corneal thickness, and increased anterior chamber depth (ACD). We sought to determine whether Chrdl1 knockout (KO) mice would recapitulate the ocular findings found in patients with MGC1. METHODS: We generated mice with a Chrdl1 KO allele and confirmed that male Chrdl1 hemizygous KO mice do not express Chrdl1 mRNA. We examined the eyes of male mice that were hemizygous for either the wild-type (WT) or KO allele and measured corneal diameter, corneal area, corneal thickness, endothelial cell density, ACD, tear volume, and intraocular pressure. We also harvested retinas and counted retinal ganglion cell numbers. Eye segregation pattern in the dorsal lateral geniculate nucleus were also compared between male Chrdl1 KO and WT mice. RESULTS: Male Chrdl1 KO mice do not have larger cornea diameters than WT mice. KO mice have significantly thicker central corneas (116.5 ± 3.9 vs. 100.9 ± 4.2 µm, P = 0.013) and smaller ACD (325.7 ± 5.7 vs. 405.6 ± 6.3 µm, P < 0.001) than WT mice, which is the converse of what occurs in patients who lack CHRDL1. Retinal-thalamic projections and other ocular measurements did not significantly differ between KO and WT mice. CONCLUSIONS: Male Chrdl1 KO mice do not have the same anterior chamber abnormalities seen in humans with CHRDL1 mutations. Therefore, Chrdl1 KO mice do not recapitulate the human MGC1 phenotype. Nevertheless, Chrdl1 plays a role during mouse ocular development because corneas in KO mice differ from those in WT mice.


Assuntos
DNA/genética , Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Proteínas do Tecido Nervoso/genética , Animais , Linhagem Celular , Análise Mutacional de DNA , Modelos Animais de Doenças , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Proteínas do Olho/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fenótipo
4.
Neuropsychopharmacology ; 45(2): 337-346, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31202213

RESUMO

Memories do not persist in a permanent, static state but instead must be dynamically modified in response to new information. Although new memory formation is typically studied in a laboratory setting, most real-world associations are modifications to existing memories, particularly in the aging, experienced brain. To date, the field has lacked a simple behavioral paradigm that can measure whether original and updated information is remembered in a single test session. To address this gap, we have developed a novel memory updating paradigm, called the Objects in Updated Locations (OUL) task that is capable of assessing memory updating in a non-stressful task that is appropriate for both young and old rodents. We first show that young mice successfully remember both the original memory and the updated information in OUL. Next, we demonstrate that intrahippocampal infusion of the protein synthesis inhibitor anisomycin disrupts both the updated information and the original memory at test, suggesting that memory updating in OUL engages the original memory. To verify this, we used the Arc CatFISH technique to show that the OUL update session reactivates a largely overlapping set of neurons as the original memory. Finally, using OUL, we show that memory updating is impaired in aging, 18-m.o. mice. Together, these results demonstrate that hippocampal memory updating is impaired with aging and establish that the OUL paradigm is an effective, sensitive method of assessing memory updating in rodents.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Transtornos da Memória/psicologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
5.
J Neurosci ; 39(25): 4999-5009, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000586

RESUMO

Aging is accompanied by cognitive deficits, including impairments in long-term memory formation. Understanding the molecular mechanisms that support preserved cognitive function in aged animals is a critical step toward identifying novel therapeutic targets that could improve memory in aging individuals. One potential mechanism is the Nr4a family of genes, a group of CREB-dependent nuclear orphan receptors that have previously been shown to be important for hippocampal memory formation. Here, using a cross-species approach, we tested the role of Nr4a1 and Nr4a2 in age-related memory impairments. Using a rat model designed to identify individual differences in age-related memory impairments, we first identified Nr4a2 as a key gene that fails to be induced by learning in cognitively impaired male aged rats. Next, using a mouse model that allows for genetic manipulations, we determined that histone deacetylase 3 (HDAC3) negatively regulates Nr4a2 in the aged male and female hippocampus. Finally, we show that overexpression of Nr4a1, Nr4a2, or both transcripts in the male mouse dorsal hippocampus can ameliorate age-related impairments in object location memory. Together, our results suggest that Nr4a2 may be a key mechanism that promotes preserved cognitive function in old age, with HDAC3-mediated repression of Nr4a2 contributing to age-related cognitive decline. More broadly, these results indicate that therapeutic strategies to promote Nr4a gene expression or function may be an effective strategy to improve cognitive function in old age.SIGNIFICANCE STATEMENT Aging is accompanied by memory impairments, although there is a great deal of variability in the severity of these impairments. Identifying molecular mechanisms that promote preserved memory or participate in cognitive reserve in old age is important to develop strategies that promote healthy cognitive aging. Here, we show that learning-induced expression of the CREB-regulated nuclear receptor gene Nr4a2 is selectively impaired in aged rats with memory impairments. Further, we show that Nr4a2 is regulated by histone deacetylase HDAC3 in the aged mouse hippocampus. Finally, we demonstrate that hippocampal overexpression of either Nr4a2 or its family member, Nr4a1, can ameliorate age-related memory impairments. This suggests that promoting Nr4a expression may be a novel strategy to improve memory in aging individuals.


Assuntos
Envelhecimento/genética , Histona Desacetilases/genética , Transtornos da Memória/genética , Memória de Longo Prazo/fisiologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Transtornos da Memória/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ratos
6.
Nat Commun ; 9(1): 3323, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127461

RESUMO

Aging is accompanied by impairments in both circadian rhythmicity and long-term memory. Although it is clear that memory performance is affected by circadian cycling, it is unknown whether age-related disruption of the circadian clock causes impaired hippocampal memory. Here, we show that the repressive histone deacetylase HDAC3 restricts long-term memory, synaptic plasticity, and experience-induced expression of the circadian gene Per1 in the aging hippocampus without affecting rhythmic circadian activity patterns. We also demonstrate that hippocampal Per1 is critical for long-term memory formation. Together, our data challenge the traditional idea that alterations in the core circadian clock drive circadian-related changes in memory formation and instead argue for a more autonomous role for circadian clock gene function in hippocampal cells to gate the likelihood of long-term memory formation.


Assuntos
Envelhecimento/fisiologia , Ritmo Circadiano/genética , Epigênese Genética , Hipocampo/fisiologia , Memória/fisiologia , Proteínas Circadianas Period/genética , Animais , Deleção de Genes , Técnicas de Silenciamento de Genes , Histona Desacetilases/metabolismo , Potenciação de Longa Duração , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Proteínas Circadianas Period/metabolismo
7.
Learn Mem ; 25(3): 109-114, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29449454

RESUMO

Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific chromatin remodeling subunit BAF53b impairs long-term memory. Here, we show that deleting HDAC3 can ameliorate the impairments in both long-term memory and synaptic plasticity caused by BAF53b mutation. This suggests a dynamic interplay exists between histone acetylation/deacetylation and nucleosome remodeling mechanisms in the regulation of memory formation.


Assuntos
Histona Desacetilases/deficiência , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Animais , Epigênese Genética , Feminino , Hipocampo/metabolismo , Histona Desacetilases/genética , Potenciação de Longa Duração/genética , Masculino , Transtornos da Memória/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...