Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7903, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036497

RESUMO

Ample evidence has suggested the stress etiology of depression, but the underlying mechanism is not fully understood yet. Here, we report that chronic social defeat stress (CSDS) attenuates the excitatory output of the claustrum (CLA) to the prelimbic cortex (PL) through the dynorphin/κ-opioid receptor (KOR) signaling, being critical for depression-related behaviors in male mice. The CSDS preferentially impairs the excitatory output from the CLA onto the parvalbumin (PV) of the PL, leading to PL micronetwork dysfunction by disinhibiting pyramidal neurons (PNs). Optogenetic activation or inhibition of this circuit suppresses or promotes depressive-like behaviors, which is reversed by chemogenetic inhibition or activation of the PV neurons. Notably, manipulating the dynorphin/KOR signaling in the CLA-PL projecting terminals controls depressive-like behaviors that is suppressed or promoted by optogenetic activation or inhibition of CLA-PL circuit. Thus, this study reveals both mechanism of the stress etiology of depression and possibly therapeutic interventions by targeting CLA-PL circuit.


Assuntos
Claustrum , Receptores Opioides kappa , Masculino , Camundongos , Animais , Receptores Opioides kappa/metabolismo , Dinorfinas , Depressão/etiologia , Claustrum/metabolismo , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL
2.
Behav Brain Res ; 438: 114211, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36368442

RESUMO

Major depressive disorder is a complex psychiatric disorder with a high prevalence rate worldwide. Previous studies have demonstrated the involvement of the prelimbic cortex (PL) in mediating depressive-like behavior, however, the exact molecular mechanism taking place in the PL remains unclear. In the present study, we conducted high-throughput sequencing of mRNAs and miRNAs in PL tissue harvested from chronic social defeat stress (CSDS) susceptible male mice. We identified 59 differentially expressed mRNAs and 6 differentially expressed miRNAs, in which 40 mRNAs and 3 miRNAs were up-regulated, while 19 mRNAs and 3 miRNAs were down-regulated. Integrated analysis of miRNA-mRNA networks suggested that GPR35 signaling might be involved in CSDS-induced depressive-like behaviors. RT-PCR and western blot assays validated that Abra, Sell and GPR35 were up-regulated. Functionally, inhibition of GPR35 in the PL ameliorated CSDS-induced depressive-like behaviors. Thus, the present study provided a global view of mRNA and miRNA profiles in the PL of male stress susceptible mice, and suggested that GPR35 signaling was associated with CSDS-induced depressive-like behaviors. These results may be valuable for further investigations of the molecular regulatory mechanisms in stress-induced depression.


Assuntos
Transtorno Depressivo Maior , MicroRNAs , Camundongos , Masculino , Animais , Derrota Social , Depressão/metabolismo , Estresse Psicológico/metabolismo , RNA Mensageiro , MicroRNAs/genética , Suscetibilidade a Doenças , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G
3.
Acta Pharmacol Sin ; 44(3): 538-545, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36127507

RESUMO

Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 µg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.


Assuntos
Dinorfinas , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Dinorfinas/metabolismo , Receptores Opioides kappa , Morfina , Analgésicos Opioides/farmacologia , Regulação para Cima , Antagonistas de Entorpecentes/farmacologia , Hipocampo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Med Chem ; 65(15): 10377-10392, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35900351

RESUMO

Undue central nervous system (CNS) side effects including dysphoria and sedation remain to be a challenge for the development of κ opioid receptor (KOR) agonists as effective and safe analgesics. On the basis of our previous work on morphinan-based KOR agonists, a series of 7α-methyl-7ß-substituted northebaine derivatives were designed, synthesized, and biologically assayed. Among others, compound 4a (SLL-627) has been identified as a highly selective and potent KOR agonist both in vitro and in vivo, and its molecular basis was also examined and discussed. Besides low liability to conditioned place aversion (CPA) test, treatment of SLL-627 was associated with a nonreduction in locomotor activity, compared to most of the other arylacetamide- or morphinan-based KOR agonists which generally exhibited apparently sedative effects. This unexpected finding provides new insights to dissociate analgesia from sedation for future discovery of innovative KOR agonists.


Assuntos
Morfinanos , Receptores Opioides kappa , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Locomoção , Morfinanos/farmacologia , Receptores Opioides kappa/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...