Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(10): 3836-3844, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37782772

RESUMO

An ability to real-time and continuously monitor ammonium/ammonia profiles of coastal waters over a prolonged period in a simple and maintenance-free fashion would enable economic conducting large-scale assessments, providing the needed scientific insights to better control and mitigate the impact of eutrophication on coastal ecosystems. However, this is a challenging task due to the lack of capable sensors. Here, we demonstrate the use of a membrane-based conductometric ammonia sensing probe (CASP) for real-time monitoring of ammonia levels in coastal waters. A boric acid/glycerol receiving phase is investigated and innovatively utilized to overcome the high salinity of coastal water-induced analytical errors. A calibration-free approach is used to eliminate the need for ongoing calibration, while the issues concerning practical applications, such as salinity variation, ammonia intake capability, and biofouling, are systematically investigated. The field deployment at an estuary confluence water site over a half-moon cycle period confirms that CASP is capable of continuously monitoring the ammonia profile of coastal waters in real-time with high resolution and accuracy to unveil the dynamic ammonia concentration changes over a prolonged period.


Assuntos
Amônia , Compostos de Amônio , Amônia/análise , Ecossistema , Monitoramento Ambiental , Água
2.
Sci Total Environ ; 883: 163806, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37127161

RESUMO

VUV photolysis presents a simple process for VOCs degradation, while the poor mineralization rate and extensive by-products greatly limit its application. In this study, the contribution and synergy between •OH and •O2- to toluene degradation in the VUV-based process were comprehensively investigated by controlling water and oxygen in the gas flow. It was found that •OH promoted the initial degradation of toluene and macromolecular intermediates, while •O2- dominated toluene mineralization by boosting the formation of small molecules and CO2. Compared with the •OH-dominated VUV photolysis, the presence of catalyst greatly changed the degradation pathway, promoted toluene mineralization into CO2 and reduced health toxicity via promoting •O2- formation. This study originally focuses on the key role of •O2- in VOCs deep oxidation and provides an effective strategy to boost its clean mineralization via the VUV-based process.

3.
Sci Total Environ ; 857(Pt 2): 159295, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228796

RESUMO

As a kind of emerging pollutant, volatile organic compounds (VOCs) are getting increasing attention due to their contribution to the formation of atmospheric haze and O3. Photocatalytic oxidation under vacuum ultraviolet photocatalytic oxidation (VUV-PCO) presents a promising method for VOCs degradation, but it is seldom studied for VOCs compound and the mechanism is still elusive. Herein, typical VOCs such as toluene and ethyl acetate were degraded separately or together in VUV system and in VUV-PCO system with the designed trifunctional catalyst Mn/TiO2/ZSM-5. Intermediates were recognized by PTR-TOF-MS. It is found that dual VOCs mixture outperformed single VOCs under both VUV process and VUV-PCO process. Possible degradation mechanisms were proposed. To explore the potential practicality of VUV-PCO technology, scale-up synthesis of Mn/TiO2/ZSM-5 on ceramic foams was successfully carried out and assembled into a homemade pilot-scale VUV-PCO equipment for the control of simulated VOCs complex (toluene, ethyl acetate, ethanol, and acetone). Pilot-scale catalytic testing with the monolithic catalysts achieved high removal efficiency (over 90 % efficiency after two cycles of regeneration) and confirmed the practical application possibility of VUV-PCO technology in multiple VOCs degradation. This work probes into the VUV-PCO technology applicability from lab scale to pilot scale and promotes the understanding of VUV and VUV-PCO in VOCs complex decomposition.


Assuntos
Compostos Orgânicos Voláteis , Vácuo , Raios Ultravioleta , Catálise , Oxirredução , Tolueno
4.
Front Comput Neurosci ; 16: 1090301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704229

RESUMO

To improve the network switching performance and efficiency of mobile phone terminals and establish an efficient mobile communication network connection, this paper constructs the SDN+MPTCP+CP (Software Defined Network, Multi-Path TCP, and Mobile Terminal) mobile communication network model and designs a network switching algorithm with a preselected available access point name (APN) based on the potential game method. The constructed network model integrates a 5G mobile communication network, satellite communication, the SDN network, and the MPTCP multi-way communication technology. APN access point is preselected by using Kalman filtering theory, and dual problems are resolved with the Lagrange function. To determine the MPTCP sub-flow transmission path, the differential derivative calculation is introduced. The performance of the network switching strategy is evaluated based on the Jacobian matrix. Then, the game coefficient is designed, and the game function is calculated. A potential game balance point is found, and an updating strategy is formulated to determine the best APN access point. The simulation network model is constructed, and the parameters of the performance evaluation are defined to find the performance comprehensively. The experimental results demonstrated the extreme reliability, stability, and compatibility of the proposed algorithm.

5.
J Hazard Mater ; 399: 122967, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32504905

RESUMO

Volatile organic compounds (VOCs) exists ubiquitously in chemical industries and were regarded as major contributors to air pollution, which should be strictly regulated. Vacuum ultraviolet irradiation coupled with photocatalytic oxidation (VUV-PCO) has been considered as an efficient approach to VOCs removal due to high-energy photons which could break down VOCs directly and be absorbed by photocatalysts to generate free radicals for further oxidation. However, the photochemical transformation mechanisms of VOCs have not been fully revealed. Herein, we systematically analyzed the intermediates using proton-transfer-reaction mass spectrometer (PTR-MS) to explore the transformation mechanisms of toluene degradation in VUV and VUV-PCO processes. VUV-PCO process displayed superior toluene degradation efficiency (50 %) and mineralization efficiency (65 %) compared with single VUV photolysis (35 %) and UV photocatalysis (5 %). TiO2 was deeply involved into CO2 generalization by amplifying the advantages of VUV system and further mineralizing the intermediates. In VUV and VUV-PCO processes, O2 participation changed the intermediates distribution by increasing multiple oxygenated products, while the introduction of water contributed to the formation and degradation of most intermediates. A possible degradation mechanism of toluene under VUV irradiation combined with TiO2 was proposed. This study provides a deep mechanistic insight into VOCs degradation by VUV-PCO process.

6.
J Hazard Mater ; 364: 770-779, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447561

RESUMO

Volatile organic compounds (VOCs) are one of the most important precursors to form the fine particulate matter and photochemical smog, and should be strictly controlled. Vacuum ultraviolet (VUV) photolysis has provided a facile and an effective way to remove VOCs due to its powerful oxidation capability under mild reaction conditions. However, VUV irradiation would generate ozone which brings about secondary pollution. In this study, ZSM-5 supported Mn-Ce mixed oxides (Mn-xCe/ZSM-5) were fabricated as efficient catalysts for ozone catalytic oxidation (OZCO) process, which were applied in combination with VUV photolysis to remove O3 byproduct and simultaneously facilitate toluene oxidation. The results indicated that the Mn-3Ce/ZSM-5 catalyst considerably enhanced the catalytic degradation efficiency up to 93% for the gas-phase toluene, one of the hazardous VOCs. Meanwhile, almost all the O3 by-product could be eliminated in the process. It was found that the strong interaction of the MnOCe bond and the variable chemical valence of Mn and Ce based species in the mixed oxides would tune the redox capacity of Mn-xCe /ZSM-5. An increase in surface Ce3+ species and surface density of oxygen vacancies would benefit the adsorption and catalytic transformation of O3 which eventually form the reactive oxygen species over Mn-xCe/ZSM-5.

7.
Chemosphere ; 208: 550-558, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29890493

RESUMO

Volatile organic compounds (VOCs) are regarded as the major contributors to air pollution, and should be strictly regulated. Photocatalytic oxidation (PCO) is of great interest for the removal of VOCs owing to its strong oxidation capability. However, its application is greatly limited by catalytic deactivation. Vacuum Ultraviolet (VUV) irradiation provides a novel way to improve the photocatalytic activity while much O3 will be generated which may cause secondary pollution. In this study, a multi-functional catalyst of Mn/TiO2/activated carbon (AC) was developed to eliminate and utilize O3, as well as enhance catalytic oxidation of VOC degradation via ozone-assisted catalytic oxidation (OZCO). The results indicate that Mn modified TiO2/AC (i.e. 0.1%Mn/20%TiO2/AC) achieved a toluene removal efficiency of nearly 86% with 100% elimination rate of O3. With the help of Mn/TiO2/AC catalyst, O3 was catalytically decomposed and transformed into active species of O (1D) and OH, thus enhancing toluene removal. The combination of VUV irradiation with multi-functional catalyst provides a novel and efficient way for the degradation of VOCs.


Assuntos
Raios Ultravioleta , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/química , Catálise , Carvão Vegetal , Manganês , Oxirredução , Ozônio/química , Titânio , Tolueno/química
8.
Bioinorg Chem Appl ; 2015: 548961, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26060427

RESUMO

A novel amino-functionalized silica-coated nanoscale zerovalent iron (NZVI@SiO2-NH2) was successfully synthesized by using one-step liquid-phase method with the surface functionalization of nanoscale zerovalent iron (NZVI) to enhance degradation of chlorinated organic contaminants from anaerobic microbial system. NZVI@SiO2-NH2 nanoparticles were synthesized under optimal conditions with the uniform core-shell structure (80-100 nm), high loading of amino functionality (~0.9 wt%), and relatively large specific surface area (126.3 m(2)/g). The result demonstrated that well-dispersed NZVI@SiO2-NH2 nanoparticle with nFe(0)-core and amino-functional silicon shell can effectively remove 2,4,6-trichlorophenol (2,4,6-TCP) in the neutral condition, much higher than that of NZVI. Besides, the surface-modified nanoparticles (NZVI@SiO2-NH2) in anaerobic granule sludge system also showed a positive effect to promote anaerobic biodechlorination system. More than 94.6% of 2,4,6-TCP was removed from the combined NZVI@SiO2-NH2-anaerobic granular sludge system during the anaerobic dechlorination processes. Moreover, adding the appropriate concentration of NZVI@SiO2-NH2 in anaerobic granular sludge treatment system can decrease the toxicity of 2,4,6-TCP to anaerobic microorganisms and improved the cumulative amount of methane production and electron transport system activity. The results from this study clearly demonstrated that the NZVI@SiO2-NH2/anaerobic granular sludge system could become an effective and promising technology for the removal of chlorophenols in industrial wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA