Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(95): 14149-14152, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37955226

RESUMO

The perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides for the electrocatalytic oxygen reduction reaction (ORR) were synthesized by a facile reaction-EDTA/citric acid mixed complex sol-gel method. The cubic single-phase perovskite structure of the as-prepared oxides is demonstrated using powder X-ray diffraction (XRD). Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy/selected area electron diffraction (TEM-SAED), and X-ray photoelectron spectroscopy (XPS) characterizations were also conducted for the perovskite-type La(0.5+x)Sr(0.5-x)FeO3-δ (x = 0.00, 0.10, 0.20) oxides. Furthermore, the electrochemical ORR properties of the as-prepared oxides in alkaline media were studied, with the oxides exhibiting good electrocatalytic ORR performance.

2.
Anal Chim Acta ; 1267: 341333, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257968

RESUMO

Acute myocardial infarction (AMI) is acute necrosis of a portion of the myocardium caused by myocardial ischemia, which seriously threatens people's health and life safety. Its early diagnosis is a difficult problem in clinical medicine. Research has found that the abnormal expression of microRNA-199a (miR-199a) and microRNA-499 (miR-499) was closely related to AMI disease. In this work, we took advantage of the structural advantages of nitrogen-doped hollow carbon nanospheres (N-HCNSs) to design an ultra-sensitive, portable real-time monitoring visual self-powered biosensor system, which based on dual-target miRNAs triggered catalytic hairpin assembly (CHA) for sensitive detection of miR-199a and miR-499. In addition, the capacitor and the smartphone are introduced into the system to realize the secondary improvement of system sensitivity and portable real-time visual monitoring. Under optimized conditions, in the linear range of 0.1-100000 aM, the detection limits of miR-199a and miR-499 are 0.031 and 0.027 aM, respectively. At the same time, the ultra-sensitive detection of miRNAs is realized in the serum sample, and the recovery rate of miR-199a and miR-499 are 98.0-106.0% (RSD: 0.6-8.1%) and 94.0-109.7% (RSD: 1.8-7.7%), respectively. The method is simple, sensitive and can be used for real-time tracking and portable monitoring of related diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Nanosferas , Humanos , Nitrogênio , Carbono , Infarto do Miocárdio/diagnóstico
3.
J Colloid Interface Sci ; 639: 292-301, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805754

RESUMO

Layered molybdenum disulfide (MoS2) shows tremendous prospect as cathode material for aqueous zinc-ion batteries (AZIBs) due to the two-dimensional zinc ions (Zn2+) diffusion channels and tunable interlayer spacing. However, it is subjected to sluggish insertion/extraction kinetics, inferior electronic conductivity and inadequate active capacities. Herein, a three-dimensional (3D) interconnected MoS2/multi-walled carbon nanotubes (MWCNTs) framework is proposed to address these issues. Importantly, the MWCNTs cores offer interconnection routes for fast electrons and zinc ions transport, the expanded spacing of MoS2 interlayer with 1.05 nm can facilitate rapid Zn2+ intercalation/extraction, and the confined MoS2 layers in inner MWCNTs can mitigate the agglomeration and restacking of MoS2 nanosheets. Benefitting from the confined structural configuration, sufficient active surface and 3D structural stability, the MoS2/MWCNTs as AZIBs cathode delivers a large initial reversible capacity of 218.3 mAh/g and high coulombic efficiency of 78.2 % at 0.1 A/g. Additionally, the 3D interconnected cathode maintains nearly intact structure after a fierce galvanostatic charge/discharge process, resulting in large retained capacities of 126.3 mAh/g at 1 A/g after 650 cycles and 101.1 mAh/g at 3 A/g after 1000 cycles. This work offers a novel strategy for the structure design of two-dimensional materials to develop high-performance cathodes for AZIBs.

4.
Anal Chim Acta ; 1239: 340702, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628768

RESUMO

A self-powered biosensor (SPB) was constructed for the ultra-sensitive detection of microRNA-155 (miR-155) by combining a capacitor/enzymatic biofuel cell (EBFC), a strategy of rolling circle amplification (RCA) and a digital multimeter (DMM). The experimental results show that the sensitivity of the assembled EBFC-SPB can reach 15.85 µA/pM with the action of matching capacitor, which is 513% of that without capacitor (3.09 µA/pM). This achieves the first signal amplification. Furthermore, when the target miR-155 triggers RCA, electrons are continuous generated and flow to the biocathode through the external circuit to catalyze the reduction of oxygen and release [Ru(NH3)6]3+ electron acceptor. This achieves the second signal amplification. Finally, DMM is used to convert the signal into instantaneous current and amplify it for real-time reading. This achieves the third signal amplification. Therefore, the limit of detection (LOD) of the developed biosensor is as low as 0.17 fM (S/N = 3), and the linear range is between 0.5 fM and 10,000 fM, indicating that the EBFC-SPB has a broad application prospect for cancer marker of miR-155 with ultrasensitive detection.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , MicroRNAs , Limite de Detecção , Técnicas Biossensoriais/métodos , Catálise , Técnicas Eletroquímicas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Inorg Chem ; 60(16): 12526-12535, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34337950

RESUMO

Nanoengineering of metal anode materials shows great potential for energy storage with high capacity. Zero-dimensional nanoparticles are conducive to acquire remarkable electrochemical properties in sodium-ion batteries (SIBs) because of their enlarged surface active sites. However, it is still difficult to fulfill the requirements of practical applications in batteries owing to the deficiency of efficient and scalable preparation approaches of high-performance metal electrode materials. Herein, an electrochemical cathodic corrosion method is proposed for the tunable preparation of nanostructured antimony (Sb) by the introduction of a surfactant, which can efficiently avoid the agglomeration of Sb atom clusters generated from the Zintl compound and further stacking into bulk during the electrochemical process. Subsequently, graphene as the support and conductive matrix is uniformly interspersed by generating Sb nanoparticles (Sb/Gr). Moreover, the reversible crystalline-phase evolution of Sb ⇋ NaSb ⇋Na3Sb for Sb/Gr was studied by in situ X-ray diffraction (XRD). Benefiting from the interconnection of the conductive network, Sb/Gr anodes deliver a high capacity of 635.34 mAh g-1, a retained capacity of 507.2 mAh g-1 after 150 cycles at 0.1 C (1 C = 660 mAh g-1), and excellent rate performance with the capacities of 473.41 and 405.09 mAh g-1 at 2 and 5 C, respectively. The superior cycle stability with a capacity of 346.26 mAh g-1 is achieved after 500 cycles at 2 C. This electrochemical approach offers a new route toward developing metal anodes with designed nanostructures for high-performance SIBs.

6.
Chem Commun (Camb) ; 57(19): 2396-2399, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33543181

RESUMO

Bismuthene was prepared via the oxidation of Zintl clusters by electrochemical cathodic corrosion. It was found that the conversion of Zintl clusters from Bi22- to Bi2 occurred in the electrolyte having short alkyl chains due to the faster kinetics of highly reactive carbocation. Considering that c-Na3Bi exists in a wide voltage range, monitored by in situ XRD, a new wide peak for the as-obtained bismuthene in the CV curve was noticed, which benefits the improvement of electrochemical performances.

7.
Adv Mater ; 31(3): e1806092, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30430659

RESUMO

Exploring high-rate electrode materials with excellent kinetic properties is imperative for advanced sodium-storage systems. Herein, novel cubic-like XFe (X = Co, Ni, Mn) Prussian blue analogs (PBAs), as cathodes materials, are obtained through as-tuned ionic bonding, delivering improved crystallinity and homogeneous particles size. As expected, Ni-Fe PBAs show a capacity of 81 mAh g-1 at 1.0 A g-1 , mainly resulting from their physical-chemical stability, fast kinetics, and "zero-strain" insertion characteristics. Considering that the combination of elements incorporated with carbon may increase the rate of ion transfer and improve the lifetime of cycling stability, they are expected to derive binary metal-selenide/nitrogen-doped carbon as anodes. Among them, binary Ni0.67 Fe0.33 Se2 coming from Ni-Fe PBAs shows obvious core-shell structure in a dual-carbon matrix, leading to enhanced electron interactions, electrochemical activity, and "metal-like" conductivity, which could retain an ultralong-term stability of 375 mAh g-1 after 10 000 loops even at 10.0 A g-1 . The corresponding full-cell Ni-Fe PBAs versus Ni0.67 Fe0.33 Se2 deliver a remarkable Na-storage capacity of 302.2 mAh g-1 at 1.0 A g-1 . The rational strategy is anticipated to offer more possibilities for designing advanced electrode materials used in high-performance sodium-ion batteries.

8.
RSC Adv ; 9(27): 15210-15216, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35514828

RESUMO

Antimony sulfide (Sb2S3) has drawn widespread attention as an ideal candidate anode material for sodium-ion batteries (SIBs) due to its high specific capacity of 946 mA h g-1 in conversion and alloy reactions. Nevertheless, volume expansion, a common flaw for conversion-alloy type materials during the sodiation and desodiation processes, is bad for the structure of materials and thus obstructs the application of antimony sulfide in energy storage. A common approach to solve this problem is by introducing carbon or other matrices as buffer material. However, the common preparation of Sb2S3 could result in environmental pollution and excessive energy consumption in most cases. To incorporate green chemistry, natural stibnite ore (Sb2S3) after modification via carbon sheets was applied as a first-hand material in SIBs through a facile and efficient strategy. The unique composites exhibited an outstanding electrochemical performance with a higher reversible capacity, a better rate capability, as well as an excellent cycling stability compared to that of the natural stibnite ore. In short, the study is expected to offer a new approach to improve Sb2S3 composites as an anode in SIBs and a reference for the development of natural ore as a first-hand material in energy storage.

9.
Nanoscale ; 11(1): 16-33, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30525147

RESUMO

Unlike zero-dimensional quantum dots, one-dimensional nanowires/nanorods, and three-dimensional networks or even their bulk counterparts, the charge carriers in two-dimensional (2D) materials are confined along the thickness while being allowed to move along the plane. They have distinct characteristics like strong quantum confinement, tunable thickness, and high specific surface area, which makes them a promising candidate in a wide range of applications such as electronics, topological spintronic devices, energy storage, energy conversion, sensors, biomedicine, catalysis, and so on. After the discovery of the extraordinary properties of graphene, other graphene-like 2D materials have attracted a great deal of attention. Like graphene, to realize their potential applications, high efficiency and low cost industrial scale methods should be developed to produce high-quality 2D materials. The electrochemical methods usually performed under mild conditions are convenient, controllable, and suitable for mass production. In this review, we introduce the latest and most representative investigations on the fabrication of 2D monoelemental Xenes, 2D transition-metal dichalcogenides, and other important emerging 2D materials such as organic framework (MOF) nanosheets and MXenes through electrochemical exfoliation. The electrochemical exfoliation conditions of the bulk layered materials are discussed. The numerous factors which will affect the quality of the exfoliated 2D materials, the possible exfoliating mechanism and potential applications are summarized and discussed in detail. A summary of the discussion together with perspectives and challenges for the future of this emerging field is also provided in the last section.

10.
Nanoscale ; 10(39): 18786-18794, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30276389

RESUMO

Transition metal sulfides (TMSs) have been extensively studied as electrode materials for sodium-ion batteries by virtue of their high theoretical capacity. However, the poor cyclability limits the practical application of TMSs in sodium ion batteries. In this study, N-rich carbon-coated Co3S4 ultrafine nanocrystal (Co3S4@NC) was prepared by utilizing ZIF-67 as a precursor through continuous carbonization and sulfuration processes, exhibiting ultrafine nanocrystals with a diameter of about 5 nm. When utilized as the anode for sodium ion batteries, the nanohybrid material exhibits remarkable cycling performance with a high specific capacity of 420.9 mA h g-1 at the current density of 100 mA g-1 after 100 cycles, indicating that the cycling performance is strengthened by the nitrogen-doped carbon coating. Impressively, the obtained material shows good rate performances with reversible specific capacities of 386.7, 284.0, and 151.2 mA h g-1 at 400, 1000, and 1400 mA g-1, respectively, due to the high surface-capacitance contribution and porous structure inherited from the precursor, which finally results in the increase in infiltration of electrolyte and the accelerating diffusion rate of Na+. This study sheds light on the routes to improve the performance of TMSs@nitrogen-doped carbon nanohybrid materials for sodium ion batteries.

11.
Biosens Bioelectron ; 94: 616-625, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28365557

RESUMO

An ultrasensitive sandwich-type electrochemical biosensor for DNA detection is developed based on spherical silicon dioxide/molybdenum selenide (SiO2@MoSe2) and graphene oxide-gold nanoparticles (GO-AuNPs) hybrids as carrier triggered Hybridization Chain Reaction (HCR) coupling with multi-signal amplification. The proposed sensoring assay utilizes a spherical SiO2@MoSe2/AuNPs as sensing platform and GO-AuNPs hybrids as carriers to supply vast binding sites. H2O2+HQ system is used for DNA detection and HCR as the signal and selectivity enhancer. The sensor is designed in sandwich type to increase the specificity. As a result, the present biosensor exhibits a good dynamic range from 0.1fM to 100pM with a low detection limit of 0.068fM (S/N=3). This work shows a considerable potential for quantitative detection of DNA in early clinical diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , DNA/isolamento & purificação , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Sítios de Ligação , DNA/química , Grafite/química , Humanos , Molibdênio/química , Dióxido de Silício/química
12.
Biosens Bioelectron ; 89(Pt 2): 989-997, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27825521

RESUMO

An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS2) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , MicroRNAs/isolamento & purificação , Biotina/química , DNA de Cadeia Simples/química , Dissulfetos/química , Técnicas Eletroquímicas , Ouro/química , Humanos , Limite de Detecção , MicroRNAs/sangue , MicroRNAs/química , Molibdênio/química
13.
J Mater Chem B ; 5(27): 5362-5372, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264075

RESUMO

In this work, we report the development of an ultrasensitive sandwich-type electrochemical aptasensor for protein detection. The aptasensor is fabricated by using nitrogen-doped graphene oxide (N-GO) and Au nanoparticles (AuNPs) as sensing substrates, molybdenum disulfide (MoS2) spheres as the hybridization chain reaction (HCR) platform, and thrombin as the model protein. When the hybridization reaction is initiated through two biotinylated hairpin probes, vast horseradish peroxidases are immobilized on the long duplex by the biotin-avidin reaction. An electrochemical-chemical-chemical redox cycling reaction then takes place in the detection system, which contains p-dihydroxybenzene, ferrocene carboxylate and tris(2-carboxyethyl)phosphine. Benefiting from the good conductivity and high specific surface area of N-GO/AuNPs and MoS2 spheres, signal amplification of the HCR and detection system, and excellent selectivity of the aptamer and sandwich-type strategy, the proposed assay shows a wide linear range of 10 fM-0.1 nM towards thrombin with a detection limit of 27 aM (S/N = 3) along with clear distinction from different proteins. The proposed assay is successfully used to detect thrombin in human serum, which would have promising prospects for disease diagnosis and therapy.

14.
Biosens Bioelectron ; 86: 337-345, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27392235

RESUMO

An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction. In the presence of target miRNA, H1 opens its hairpin structure by hybridization with target miRNA. This hybridization can be displaced from the structure by another stable biotinylated hairpin DNA (H2), and target miRNA is released back to the sample solution for next cycle. Thus, a large amount of H1-H2 duplex is produced after the cyclic process. At this point, a lot of signal indicators streptavidin-conjugated alkaline phosphatase (SA-ALP) are immobilized on the electrode by the specific binding of avidin-biotin. Then, thousands of ascorbic acid, which is the enzymatic product of ALP, induces the electrochemical-chemical-chemical redox cycling to produce a strongly electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under the optimal experimental conditions, the established biosensor can detect target miRNA down to 0.05fM (S/N=3) with a linear range from 0.1fM to 100pM, and discriminate target miRNA from mismatched miRNA with a high selectivity.


Assuntos
Condutometria/instrumentação , Grafite/química , Sequências Repetidas Invertidas/genética , MicroRNAs/análise , Nanocompostos/química , Óxidos/química , Tungstênio/química , Catálise , Desenho de Equipamento , Análise de Falha de Equipamento , Ouro/química , Nanopartículas Metálicas/química , MicroRNAs/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
J Mater Chem B ; 4(6): 1186-1196, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263011

RESUMO

A 2-dimensional tungsten disulfide-acetylene black (WS2-AB) composite is synthesized by a simple hydrothermal method to achieve excellent electrochemical properties for applications as a DNA biosensor. The biosensor is fabricated based on the Au nanoparticles (AuNPs) and WS2-AB composite modified electrode, which subsequently is used to couple with a capture probe by an Au-S bond, then modified with target DNA, auxiliary DNA and bio-H1-bio-H2 (H1-H2) to perform hybridization chain reaction for signal amplification. Herein, two DNA hairpins H1 and H2 are opened by the recognition probe. The nicked double helices from hybridization chain reaction are used to immobilize horseradish peroxidase enzymes via biotin-avidin reaction, which produces signal-amplification detection of target DNA through the catalytic reaction of the hydrogenperoxide + hydroquinone system. Under optimum conditions, the as-prepared biosensor shows a good linear relationship between the current value and logarithm of the target DNA concentration ranging from 0.001 pM to 100 pM and a detection limit as low as 0.12 fM. Moreover, the fabricated biosensor exhibits good selectivity to differentiate the one-base mismatched DNA sequence. This work will open a pathway for ultrasensitive detection of other biorecognition events and gene-related diseases based on layered WS2-AB and hybridization chain reaction.

16.
Biosens Bioelectron ; 77: 69-75, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386905

RESUMO

A highly sensitive and ultrasensitive electrochemical aptasensor for platelet-derived growth factor BB (PDGF-BB) detection is fabricated based on layered molybdenum selenide-graphene (MoSe2-Gr) composites and Exonuclease III (Exo III)-aided signal amplification. MoSe2-Gr is prepared by a simple hydrothermal method and used as a promising sensing platform. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity is limited on the duplex DNAs with more than 4 mismatched terminal bases at 3' ends. Herein, aptamer and complementary DNA (cDNA) sequences are designed with four thymine bases on 3' ends. In the presence of target protein, the aptamer associates with it and facilitates the formation of duplex DNA between cDNA and signal DNA. The duplex DNA then is digested by Exo III and releases cDNA, which hybridizes with signal DNA to perform a new cleavage process. Nevertheless, in the absence of target protein, the aptamer hybridizes with cDNA will inhibit the Exo III-assisted nucleotides cleavage. The signal DNA then hybridizes with capture DNA on the electrode. Subsequently, horse radish peroxidase is fixed on electrode by avidin-biotin reaction and then catalyzes hydrogen peroxide and hydroquinone to produce electrochemical response. Therefore, a bridge can be established between the concentration of target protein and the degree of the attenuation of the obtained signal, providing a quantitative measure of target protein with a broad detection range of 0.0001-1 nM and a detection limit of 20 fM.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Condutometria/instrumentação , Exodesoxirribonucleases/química , Microquímica/instrumentação , Nanocompostos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Grafite/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Molibdênio/química , Nanocompostos/ultraestrutura , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Fator de Crescimento Derivado de Plaquetas/química , Selênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...