Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11836, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782965

RESUMO

Emerging evidence shows that FAT atypical cadherin 1 (FAT1) mutations occur in lymphoma and are associated with poorer overall survival. Considering that diffuse large B cell lymphoma (DLBCL) is the category of lymphoma with the highest incidence rate, this study aims to explore the role of FAT1 in DLBCL. The findings demonstrate that FAT1 inhibits the proliferation of DLBCL cell lines by downregulating the expression of YAP1 rather than by altering its cellular localization. Mechanistic analysis via meRIP-qPCR/luciferase reporter assays showed that FAT1 increases the m6A modification of YAP1 mRNA 3'UTR and the subsequent binding of heterogeneous nuclear ribonucleoprotein D (HNRNPD) to the m6A modified YAP1 mRNA, thus decreasing the stability of YAP1 mRNA. Furthermore, FAT1 increases YAP1 mRNA 3'UTR m6A modification by decreasing the activity of the TGFß-Smad2/3 pathway and the subsequent expression of ALKBH5, which is regulated at the transcriptional level by Smad2/3. Collectively, these results reveal that FAT1 inhibits the proliferation of DLBCL cells by increasing the m6A modification of the YAP1 mRNA 3'UTR via the TGFß-Smad2/3-ALKBH5 pathway. The findings of this study therefore indicate that FAT1 exerts anti-tumor effects in DLBCL and may represent a novel target in the treatment of this form of lymphoma.


Assuntos
Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B , RNA Mensageiro , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Caderinas/metabolismo , Caderinas/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Transdução de Sinais
2.
Case Rep Oncol ; 16(1): 734-738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900785

RESUMO

Acute myeloid leukemia (AML) is a large class of heterogeneous hematological malignancies with the highest incidence rate in acute leukemia. Its pathogenesis is still unclear, which may be related to genetics. According to the latest AML NCCN guidelines, genes involved in AML family genetic changes include RUNX1, ANKRD26, CEBPA. Finding new genes related to AML genetics is of great significance for predicting the prognosis of patients, developing targeted drugs, and selecting transplant donors. Here, we report a case of adult female AML patient whose three relatives suffered from hematological malignancies, including Waldenstrom macroglobulinemia, NK/T-cell lymphoma, and angioimmunoblastic T-cell lymphoma. The screen for genetic susceptibility genes related to blood and immune system diseases was carried out, and the result showed that the patient herself, her son, her daughter, and her two cousins all had STK11 p.F354L and/or THBD p.D486Y mutations. At present, there is no research or case report on the relationship between STK11/THBD and family aggregation of hematological malignancies. We report for the first time that an AML patient with STK11 and THBD mutations has a family aggregation of hematological malignancies, and consider that STK11 and THBD may be related to family genetic changes which ultimately cause the family aggregation of hematological malignancies.

3.
Exp Ther Med ; 14(2): 1081-1085, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28810561

RESUMO

Acute myeloid leukemia (AML) remains difficult to cure due to its drug tolerance and refractoriness. Immunotherapy is a growing area of cancer research, which has been applied for the treatment of numerous types of cancer, including leukemia. The present study generated AML cell-specific cytotoxic T lymphocytes (CTLs) in vitro and investigated the effect of combining CTL treatment with one of the most commonly used drugs for the treatment of hematological malignancies, cytarabine, on AML cell apoptosis. Firstly, it was observed that monocyte-depleted peripheral blood lymphocytes from healthy donors could be used to generate large numbers of CD3+CD8+ CTLs through immune stimulation. These CD3+CD8+ CTLs could effectively recognize and induce the apoptosis of human Kasumi-3 AML cells. In addition, cytarabine-induced AML cell apoptosis was enhanced by CTL treatment. Western blotting revealed that Bcl-2 expression was downregulated in AML cells following cytarabine and CTL treatment, indicating that the synergistic effect of this treatment on AML cell apoptosis is due to the downregulation of Bcl-2. These results highlight the potential application of CTL immunotherapy for the treatment of AML. Further studies optimizing the specificity and potency of CTLs, and identifying favorable combinations with other chemotherapeutic drug are required.

4.
Mol Clin Oncol ; 3(6): 1233-1238, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26807226

RESUMO

Epstein-Barr virus (EBV)-related non-Hodgkin's lymphoma (NHL) represents a major problem in hematological clinical studies due to its drug tolerance and refractoriness. EBV infection is a key factor driving the process of tumor growth. Immune therapy is an important biotherapeutic method of treating cancer, which is attracting increasing attention. We hypothesized that combining conventional chemotherapy with immune therapy in the treatment of EBV-related NHL may achieve better outcomes. First, we successfully cloned large numbers of EBV-specific T cells by immune stimulation ex vivo. Subsequently, the combined therapy was applied in a murine model of human EBV-related NHL. As expected, combined therapy inhibited tumor growth more effectively compared with monotherapy. In addition, we continuously tested the tumor-associated immune microenvironment and observed that the numbers of tumor-infiltrating cytotoxic T lymphocytes (CTLs) and macrophages were elevated following combined therapy. These effects suggest that EBV-specific CTLs may indirectly promote an innate immune reaction in lymphoma by activating tumor-infiltrating macrophage proliferation. Our findings may provide a guide for the prospective treatment of EBV-related NHL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...