Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2515, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514674

RESUMO

The cavity inside fullerene C60 provides a highly symmetric and inert environment for housing atoms and small molecules. Here we report the encapsulation of formaldehyde inside C60 by molecular surgery, yielding the supermolecular complex CH2O@C60, despite the 4.4 Å van der Waals length of CH2O exceeding the 3.7 Å internal diameter of C60. The presence of CH2O significantly reduces the cage HOMO-LUMO gap. Nuclear spin-spin couplings are observed between the fullerene host and the formaldehyde guest. The rapid spin-lattice relaxation of the formaldehyde 13C nuclei is attributed to a dominant spin-rotation mechanism. Despite being squeezed so tightly, the encapsulated formaldehyde molecules rotate freely about their long axes even at cryogenic temperatures, allowing observation of the ortho-to-para spin isomer conversion by infrared spectroscopy. The particle in a box nature of the system is demonstrated by the observation of two quantised translational modes in the cryogenic THz spectra.

2.
Phys Chem Chem Phys ; 25(28): 19269, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37403781

RESUMO

Correction for 'Terahertz spectroscopy of the helium endofullerene He@C60' by Tanzeeha Jafari et al., Phys. Chem. Chem. Phys., 2022, 24, 9943-9952, https://doi.org/10.1039/D2CP00515H.

3.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37338027

RESUMO

We used THz (terahertz) and INS (inelastic neutron scattering) spectroscopies to study the interaction between an endohedral noble gas atom and the C60 molecular cage. The THz absorption spectra of powdered A@C60 samples (A = Ar, Ne, Kr) were measured in the energy range from 0.6 to 75 meV for a series of temperatures between 5 and 300 K. The INS measurements were carried out at liquid helium temperature in the energy transfer range from 0.78 to 54.6 meV. The THz spectra are dominated by one line, between 7 and 12 meV, at low temperatures for three noble gas atoms studied. The line shifts to higher energy and broadens as the temperature is increased. Using a spherical oscillator model, with a temperature-independent parameterized potential function and an atom-displacement-induced dipole moment, we show that the change of the THz spectrum shape with temperature is caused by the anharmonicity of the potential function. We find good agreement between experimentally determined potential energy functions and functions calculated with Lennard-Jones additive pair-wise potentials with parameters taken from the work of Pang and Brisse, J. Chem. Phys. 97, 8562 (1993).

4.
Phys Chem Chem Phys ; 24(17): 9943-9952, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35445229

RESUMO

We studied the quantized translational motion of single He atoms encapsulated in molecular cages by terahertz absorption. The temperature dependence of the THz absorption spectra of 3He@C60 and 4He@C60 crystal powder samples was measured between 5 and 220 K. At 5 K there is an absorption line at 96.8 cm-1 (2.90 THz) in 3He@C60 and at 81.4 cm (2.44 THz) in 4He@C60, while additional absorption lines appear at higher temperature. An anharmonic spherical oscillator model with a displacement-induced dipole moment was used to model the absorption spectra. Potential energy terms with powers of two, four and six and induced dipole moment terms with powers one and three in the helium atom displacement from the fullerene cage center were sufficient to describe the experimental results. Excellent agreement is found between potential energy functions derived from measurements on the 3He and 4He isotopes. One absorption line corresponds to a three-quantum transition in 4He@C60, allowed by the anharmonicity of the potential function and by the non-linearity of the dipole moment in He atom displacement. The potential energy function of icosahedral symmetry does not explain the fine structure observed in the low temperature spectra.

5.
Materials (Basel) ; 15(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35329677

RESUMO

Nanoparticles with SiO2 coating were synthesized to have a cubic iron core. These were found to have saturation magnetization very close to the highest possible value of any iron-containing nanoparticles and the bulk iron saturation magnetization. The in vitro toxicology studies show that they are highly biocompatible and possess better MRI contrast agent potential than iron oxide NPs.

6.
J Chem Phys ; 155(14): 144302, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654304

RESUMO

The interactions between atoms and molecules may be described by a potential energy function of the nuclear coordinates. Nonbonded interactions between neutral atoms or molecules are dominated by repulsive forces at a short range and attractive dispersion forces at a medium range. Experimental data on the detailed interaction potentials for nonbonded interatomic and intermolecular forces are scarce. Here, we use terahertz spectroscopy and inelastic neutron scattering to determine the potential energy function for the nonbonded interaction between single He atoms and encapsulating C60 fullerene cages in the helium endofullerenes 3He@C60 and 4He@C60, synthesized by molecular surgery techniques. The experimentally derived potential is compared to estimates from quantum chemistry calculations and from sums of empirical two-body potentials.

7.
Nat Chem ; 8(10): 953-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27657872

RESUMO

The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...