Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 39: 100893, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893559

RESUMO

Dendritic cells (DCs) can initiate both naïve and memory T cell activation, as the most potent antigen-presenting cells. For efficient anti-tumor immunity, it is essential to enhance the anti-tumoral activity of tumor-associated DCs (TADCs) or to potently restrain TADCs so that they remain immuno-stimulating cells. Combined phospholipids (cPLs) adjuvant may act through the activation of DCs. This study demonstrated the potential mechanism of tumor growth inhibition of cPLs adjuvant, and confirmed that cPLs adjuvant could induce the maturation and activation (upregulation of MHC-II, CD80, CD40, IL-1ß, IL-12, IL-6 expression) of BMDCs in vitro. Then we isolated tumor infiltrating lymphocytes (TILs) from solid tumor and analyzed the phenotype and cytokines of TILs. The examination of the TILs revealed that cPLs adjuvant upregulated the expression of co-stimulatory molecules (MHC-II, CD86), phosphatidylserine (PS) receptor (TIM-4) on TADCs and enhanced the cytotoxic effect (CD107a), as well as pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-2) by the tumor-resident T cells. Taken together, cPLs adjuvant may be an immune-potentiating adjuvant for cancer immunotherapy. This reagent may lead to the development of new approaches in DC-targeted cancer immunotherapy.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T , Citocinas/metabolismo , Ativação Linfocitária
2.
Cancer Immunol Immunother ; 72(3): 719-731, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36053290

RESUMO

In the tumor microenvironment (TME), one of the major functions of tumor-recruited CD11b+ cells are the suppression of the T-cell-mediated anti-tumor immune response. ß-glucan could convert the phenotype of tumor-recruited CD11b+ cells from the suppressive to the promotive, and enhanced their anti-tumor effects. However, ß-glucan could enhance the PD-1/PD-L1 expression on CD11b+ cells, while PD-1 could inhibit macrophage phagocytosis and PD-L1 could induce a co-inhibitory signal in T-cells and lead to T-cell apoptosis and anergy. These protumor effects may be reversed by PD-1/PD-L1 block therapy. In the present study, we focused on the efficacy of ß-glucan anti-tumor therapy combined with anti-PD-L1 mAb treatment, and the mechanism of their synergistic effects could be fully verified. We verified the effect of ß-glucan (i.e., inflammatory cytokine secretion of TNF-α, IL-12, IL-6, IL-1ß and the expression of immune checkpoint PD-1/PD-L1) in naïve mouse peritoneal exudate CD11b+ cells. In our mouse melanoma model, treatment with a PD-L1 blocking antibody with ß-glucan synergized tumor regression. After treatment with ß-glucan and anti-PD-L1 mAb antibody, tumor infiltrating leukocyte (TILs) not only showed a competent T-cell function (CD107a, perforin, IL-2, IFN-γ and Ki67) and CTL population, but also showed enhanced tumor-recruited CD11b+ cell activity (IL-12, IL-6, IL-1ß and PD-1). This effect was also verified in the peritoneal exudate CD11b+ cells of tumor-bearing mice. PD-1/PD-L1 blockade therapy enhanced the ß-glucan antitumor effects via the blockade of tumor-recruited CD11b+ cell immune checkpoints in the melanoma model.


Assuntos
Interleucina-6 , Melanoma , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Anticorpos Monoclonais/farmacologia , Interleucina-12/farmacologia , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Nucleic Acids Res ; 50(12): e68, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35325179

RESUMO

The study and manipulation of T cell receptors (TCRs) is central to multiple fields across basic and translational immunology research. Produced by V(D)J recombination, TCRs are often only recorded in the literature and data repositories as a combination of their V and J gene symbols, plus their hypervariable CDR3 amino acid sequence. However, numerous applications require full-length coding nucleotide sequences. Here we present Stitchr, a software tool developed to specifically address this limitation. Given minimal V/J/CDR3 information, Stitchr produces complete coding sequences representing a fully spliced TCR cDNA. Due to its modular design, Stitchr can be used for TCR engineering using either published germline or novel/modified variable and constant region sequences. Sequences produced by Stitchr were validated by synthesizing and transducing TCR sequences into Jurkat cells, recapitulating the expected antigen specificity of the parental TCR. Using a companion script, Thimble, we demonstrate that Stitchr can process a million TCRs in under ten minutes using a standard desktop personal computer. By systematizing the production and modification of TCR sequences, we propose that Stitchr will increase the speed, repeatability, and reproducibility of TCR research. Stitchr is available on GitHub.


Assuntos
Receptores de Antígenos de Linfócitos T , Software , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar , Humanos , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Reprodutibilidade dos Testes
4.
Int Immunopharmacol ; 101(Pt A): 108265, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34715491

RESUMO

Dendritic cells (DCs) are recognized as the most potent antigen-presenting cells, capable of priming both naïve and memory T cells. Thus, tumor-resident DCs (tumor-associated DCs: TADCs) play a crucial role in the immune response against tumors. However, TADCs are also well known as a "double-edged sword" because an immunosuppressive environment, such as a tumor microenvironment, maintains the immature and tolerogenic properties of TADCs, resulting in the deterioration of the tumor. Therefore, it is essential to maintain and enhance the anti-tumoral activity of TADCs to aid tumor elimination. This study demonstrated the potential for tumor growth inhibition of Aureobasidium pullulan-derived ß-glucan (AP-BG). Administration of AP-BG dramatically limited the development of different types of tumor cell lines transplanted into mice. Examination of the tumor-infiltrating leukocytes revealed that AP-BG caused high expression of co-stimulatory molecules on TADCs and enhanced the production of cytolytic granules as well as pro-inflammatory cytokines by the tumor-resident T cells. Furthermore, the syngeneic mixed lymphoid reaction assay and popliteal lymph node assay showed the significant ability of AP-BG to improve DCs' antigen-specific priming of T cells in vitro and in vivo. Taken together, ß-glucan might be an immune-potentiating adjuvant for cancer treatment. This highly widely-used reagent will initiate a new way to activate DC-targeted cancer immune therapy.


Assuntos
Adjuvantes Imunológicos/farmacologia , Aureobasidium/química , Células Dendríticas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , beta-Glucanas/farmacologia , Adjuvantes Imunológicos/isolamento & purificação , Adjuvantes Imunológicos/uso terapêutico , Animais , Linhagem Celular Tumoral/transplante , Células Dendríticas/imunologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , beta-Glucanas/isolamento & purificação , beta-Glucanas/uso terapêutico
5.
Aging (Albany NY) ; 13(16): 20585-20597, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34435973

RESUMO

The prognostic value of the systemic immune-inflammation index (SII) in patients with pancreatic cancer is conflicting according to previous investigations. Therefore, we performed a meta-analysis to explore the association between SII and pancreatic cancer prognosis. Electronic databases were searched for studies exploring the association of SII with prognostic outcomes in pancreatic cancer. The endpoints were overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS), cancer-specific survival (CSS), and clinicopathological parameters. The prognostic value of SII was estimated by hazard ratio (HR) or odds ratio (OR) with a 95% confidence interval (CI). Nine studies containing 11 cohorts with 2,365 subjects in total were included in this meta-analysis. Elevated SII was associated with poor OS (HR=1.50, 95% CI=1.15-1.96, p=0.002), RFS/PFS/DFS (HR=1.52, 95% CI=1.01-2.28, p=0.045), and CSS (HR=2.60, 95% CI=1.65-4.09, p < 0.001) in patients with pancreatic cancer. Additionally, there was no significant association between SII and other parameters in pancreatic cancer such as sex, tumor location, lymph node metastasis, tumor-node-metastasis stage, vascular invasion, and grade. This meta-analysis suggested that elevated SII was a significant prognostic marker for short-term and long-term survival outcomes in patients with pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/imunologia , Feminino , Humanos , Masculino , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Sobrevida , Neoplasias Pancreáticas
6.
Biosci Rep ; 41(4)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33834191

RESUMO

Recent research has indicated that metabolically related genes play crucial roles in the pathogenesis of hepatocellular carcinoma (HCC). We evaluated the associations between novel biomarkers and retinol-binding protein 4 (RBP4) for predicting clinical HCC outcomes, hub-related genes, pathway regulation, and immune cells infiltration. Bioinformatic analyses based on data from The Cancer Genome Atlas were performed using online analysis tools. RBP4 expression was low in HCC and was also down-regulated in pan-cancers compared with normal tissues. RBP4 expression was also significantly different based on age (41-60 years old versus 61-80 years old), and low RBP4 expression levels were associated with advanced tumor stages and grades. Higher RBP4 expression was associated with better overall survival time in HCC patients, and we identified a deletion-mutation rate of 1.4% in RBP4. We also identified ten co-expressed genes most related to RBP4 and explored the relationships between six hub genes (APOB, FGA, FGG, SERPINC1, APOA1, and F2) involved in RBP4 regulation. A pathway enrichment analysis for RBP4 indicated complement and coagulation cascades, metabolic pathways, antibiotic biosynthesis pathways, peroxisome proliferator-activated receptor signaling pathways, and pyruvate metabolism pathways. These results suggest that RBP4 may be a novel biomarker for HCC prognosis, and an indicator of low immune response to the disease.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antitrombina III/genética , Antitrombina III/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Movimento Celular , Biologia Computacional , Regulação para Baixo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/fisiologia
7.
J Cell Physiol ; 236(8): 5875-5884, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33655506

RESUMO

Colorectal cancer (CRC) is one of the commonest human cancers and the fourth primary cause of cancer-related death. Previous studies have reported that miR-4429 develops anticancer function in follicular thyroid carcinoma and non-small cell lung cancer. However, whether miR-4429 is implicated in the CRC progression remains to be clarified. The aim of our current study was to explore the potential role of miR-4429 in CRC. According to the result of quantitative real-time polymerase chain reaction analysis, miR-4429 was expressed at a low level in CRC cells. Gain-of-function assays showed that the upregulation of miR-4429 inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process in CRC, whereas miR-4429 inhibition led to the opposite results. It was uncovered from mechanism experiments that miR-4429 targeted forkhead box M1 (FOXM1) and therefore regulating SMAD family member 3 (SMAD3) expression. Rescue experiments elucidated that miR-4429 influenced cell proliferation, migration, invasion, and EMT process in CRC by targeting FOXM1 to inactivate SMAD3. In conclusion, our study revealed that miR-4429 targeted FOXM1 to decrease SMAD3 expression and thus impeding cell proliferation, migration, invasion, and EMT process of CRC cells.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Proteína Smad3/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia
8.
Cancer Cell Int ; 20: 96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256205

RESUMO

BACKGROUND: Programmed death-ligand 1 (PD-L1) was the first identified ligand of programmed death-1 (PD-1). PD-1/PD-L1 interactions inhibit T cell-mediated immune responses, limit cytokine production, and promote tumor immune escape. Recently, many studies have investigated the prognostic value of PD-L1 expression in patients with melanoma. However, the results of these analyses remain a subject of debate. We have therefore carried out a meta-analysis to identify the prognostic role of PD-L1 in melanoma. METHODS: A thorough medical literature search was performed in the databases PubMed, Web of Science, and Embase until October 2019. The pooled hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated to evaluate the correlation between PD-L1 overexpression and prognosis. Publication bias was evaluated using Begg's test and Egger's test. RESULTS: Thirteen articles with 1062 enrolled patients were included in this meta-analysis. High PD-L1 expression did not correlate with overall survival (OS) (HR = 0.93, 95% CI 0.57-1.52, P = 0.781) or progression-free survival (PFS) (HR = 0.82, 95% CI 0.43-1.54, P = 0.535). However, PD-L1 overexpression correlated with the absence of lymph node (LN) metastasis (OR = 0.46, 95% CI 0.22-0.95, P = 0.036). Further, there was no significant relationship between PD-L1 expression and sex (OR = 1.29, 95% CI 0.90-1.84, P = 0.159), age (OR = 0.90, 95% CI 0.51-1.57, P = 0.708), or Eastern Cooperative Oncology Group Performance Status (OR = 0.55, 95% CI 0.06-4.83, P = 0.592). CONCLUSIONS: This meta-analysis suggested that PD-L1 expression did not predict an inferior prognosis in patients with melanoma. However, high PD-L1 expression was associated with absence of LN metastasis in such patients.

9.
Cell Physiol Biochem ; 44(3): 998-1010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29227978

RESUMO

BACKGROUND/AIMS: Osterix (Osx), a key regulator of osteoblast differentiation and bone formation, has been recently reported to be associated with the progression of breast cancer. However, the precise roles of Osx in breast cancer remain unclear. METHODS: Drug sensitivity of the cancer cells was assessed using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Target genes were obtained by high-throughput Illumina sequencing and were confirmed in vitro and in vivo. Apoptosis was analysed by Hoechst staining and western blotting. A tissue microarray including 129 samples from breast cancer patients was used for immunohistochemistry (IHC) assays. RESULTS: Overexpression of Osx decreased the chemosensitivity of breast cancer cells, while knockdown of Osx increased the chemosensitivity of breast cancer cells. In particular, we found that the decreased chemosensitivity effect was significantly associated with elevated expression of the polypeptide N-acetylgalactosaminyltransferase 14 (GALNT14). Silencing of GALNT14 in Osx-overexpressed cells restored the decreased chemosensitivity. Conversely, overexpression of GALNT14 in Osx-knockdown cells abrogated the increased chemosensitivity in breast cancer cells. In addition, we revealed that Osx decreased GALNT14-dependent chemosensitivity by enhancing anti-apoptosis. GALNT14 expression exhibited a significant association with breast cancer stages as well as the disease-free survival (DFS) rate. CONCLUSION: Osx plays an important role in the chemosensitivity and inhibition of Osx expression may represent a therapeutic strategy to enhance the chemosensitivity of breast cancer.


Assuntos
Neoplasias da Mama/patologia , N-Acetilgalactosaminiltransferases/metabolismo , Fator de Transcrição Sp7/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , N-Acetilgalactosaminiltransferases/antagonistas & inibidores , N-Acetilgalactosaminiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição Sp7/antagonistas & inibidores , Fator de Transcrição Sp7/genética , Taxa de Sobrevida , Transplante Heterólogo , Proteína X Associada a bcl-2/metabolismo
10.
Gene ; 609: 80-87, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28163094

RESUMO

Breast carcinoma is the most common malignancy in women, and the incidence rate has increased dramatically in recent years. Metastasis is responsible for most advanced breast cancer mortality, but the underlying mechanisms remain poorly understood despite extensive research. Recently, short non-coding RNA molecules, including miRNAs, which mediate changes in signalling pathways, have emerged as metastatic regulators of the breast carcinoma. Previous reports have suggested that miR-130b-3p has both oncogenic and tumour suppressor functions in a cancer type-dependent manner. However, the roles and underlying molecular mechanisms of miR-130b-3p in the development of metastasis in breast carcinoma remain unclear. Here, we reported for the first time that miR-130b-3p was differentially expressed in early-stage non-invasive MCF-7 human breast carcinoma cells and aggressive late-stage MDA-MB-231 cells. In gain-of-function and loss-of-function studies, we demonstrated that miR-130b-3p could inhibit breast carcinoma cell invasion and migration by directly targeting the Notch ligand Delta-like 1 (DLL1). Our data also indicated that MMP-9, MMP-13, and VEGF were regulated by miR-130b-3p and may be involved in the inhibition of cell invasion and migration in breast carcinoma. Collectively, our findings reveal a new regulatory mechanism of miR-130b-3p and suggest that miR-130b-3p may be a potential target against human breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Oncotarget ; 7(25): 37471-37486, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27250035

RESUMO

Osterix (Osx) is an essential transcription factor involved in osteoblast differentiation and bone formation. The precise molecular mechanisms of the regulation of Osx expression are not fully understood. In the present study, we found that in cells, both endogenous and exogenous Osx protein increased after treatment with histone deacetylase inhibitors Trichostatin A and hydroxamic acid. Meanwhile, the results of immunoprecipitation indicated that Osx was an acetylated protein and that the CREB binding protein (CBP), and less efficiently p300, acetylated Osx. The interaction and colocalization of CBP and Osx were demonstrated by Co-immunoprecipitation and immunofluorescence, respectively. In addition, K307 and K312 were identified as the acetylated sites of Osx. By contrast, HDAC4, a histone deacetylase (HDAC), was observed to interact and co-localize with Osx. HDAC4 was demonstrated to mediate the deacetylation of Osx. Moreover, we found that acetylation of Osx enhanced its stability, DNA binding ability and transcriptional activity. Finally, we demonstrated that acetylation of Osx was required for the osteogenic differentiation of C2C12 cells. Taken together, our results provide evidence that CBP-mediated acetylation and HDAC4-mediated deacetylation have critical roles in the modification of Osx, and thus are important in osteoblast differentiation.


Assuntos
Osteoblastos/citologia , Osteoblastos/metabolismo , Fator de Transcrição Sp7/metabolismo , Proteínas não Estruturais Virais/metabolismo , Acetilação , Proteína de Ligação a CREB/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Osteogênese/fisiologia , Proteínas Repressoras/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...