Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 441(7090): 203-6, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16688173

RESUMO

Meteorites provide a sample of Solar System bodies and so constrain the types of objects that have collided with Earth over time. Meteorites analysed to date, however, are unlikely to be representative of the entire population and it is also possible that changes in their nature have occurred with time. Large objects are widely believed to be completely melted or vaporized during high-angle impact with the Earth. Consequently, identification of large impactors relies on indirect chemical tracers, notably the platinum-group elements. Here we report the discovery of a large (25-cm), unaltered, fossil meteorite, and several smaller fragments within the impact melt of the giant (> 70 km diameter), 145-Myr-old Morokweng crater, South Africa. The large fragment (clast) resembles an LL6 chondrite breccia, but contains anomalously iron-rich silicates, Fe-Ni sulphides, and no troilite or metal. It has chondritic chromium isotope ratios and identical platinum-group element ratios to the bulk impact melt. These features allow the unambiguous characterization of an impactor at a large crater. Furthermore, the unusual composition of the meteorite suggests that the Morokweng asteroid incorporated part of the LL chondrite parent body not represented by objects at present reaching the Earth.

2.
Science ; 282(5390): 927-9, 1998 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-9794759

RESUMO

High-precision mass spectrometric analysis of chromium in sediment samples from the Cretaceous-Tertiary (K-T) boundary coincident with the extinction of numerous organisms on Earth confirms the cosmic origin of the K-T phenomenon. The isotopic composition of chromium in K-T boundary samples from Stevns Klint, Denmark, and Caravaca, Spain, is different from that of Earth and indicates its extraterrestrial source. The chromium isotopic signature is consistent with a carbonaceous chondrite-type impactor. The observed differences in the chromium isotopic composition among various meteorite classes can serve as a diagnostic tool for deciphering the nature of impactors that have collided with Earth during its history.


Assuntos
Isótopos do Cromo/análise , Planeta Terra , Sedimentos Geológicos/química , Meteoroides , Cromo/análise , Dinamarca , Espectrometria de Massas , Espanha
3.
Science ; 259(5098): 1138-42, 1993 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17794393

RESUMO

Isotopic analyses of nickel in samples from the differentiated meteorite Chervony Kut revealed the presence of relative excesses of (60)Ni ranging from 2.4 up to 50 parts per 10(4). These isotopic excesses are from the decay of the now extinct short-lived nuclide (60)Fe and provide clear evidence for the existence of (60)Fe over large scales in the early solar system. Not only was (60)Fe present at the time of melting and differentiation (that is, Fe-Ni fractionation) of the parent body of Chervony Kut but also later at the time when basaltic magma solidified at or near the surface of the planetesimal. The inferred abundance of (60)Fe suggests that its decay alone could have provided sufficient heat to melt small (diameters of several hundred kilometers) planetary bodies shortly after their accretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA