Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Life Sci Res ; 34(2): 197-222, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38144383

RESUMO

A bacterium was isolated from sludge-contaminated soil in a petroleum refinery and tested for its ability to degrade aliphatic hydrocarbon compounds present in petroleum sludge. The isolate was grown on minimal salt media agar supplemented with 1% (w/v) petroleum sludge. The isolate was tentatively identified as Methylobacterium s p. s t rain ZASH based on the partial 16s rDNA molecular phylogeny. The bacterium grew optimally between the temperatures of 30°C and 35°C, pH 7 and 7.5, 0.5% and 1.5% (v/v) Tween 80 as the surfactant, and between 1% and 2% (w/v) peptone as the nitrogen source. The constants derived from the Haldane equation were µmax = 0.039 hr-1, Ks = 0.385% (w/v) total petroleum hydrocarbons (TPH) or 3,850 mg/L TPH, and Ki =1.12% (w/v) TPH or 11,200 mg/L. The maximum biodegradation rate exhibited by this strain was 19 mg/L/hr at an initial TPH concentration of 10,000 mg/L. Gas chromatography analysis revealed that after 15 days the strain was able to degrade all aliphatic n-alkanes investigated with different efficiencies. Shorter n-alkanes were generally degraded more rapidly than longer n-alkanes with 90% removal for C-12 compared to only 30% removal for C-36. The addition of sawdust did not improve bacterial degradation of petroleum hydrocarbons, but it assisted in the removal of remaining undegraded hydrocarbons through adsorption.

2.
3 Biotech ; 13(5): 121, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37033387

RESUMO

A very sensitive and selective colorimetric biosensor for the measurement of mercury ion (Hg2+) in environmental samples has been developed using functionalized gold nanoparticles with bromelain enzyme (brn-AuNPs). This work has shown that Hg2+ measurement based on spectrophotometer and digital image analysis is a very innovative and successful method for providing an effective preliminary system and has promise for the future of water quality biomonitoring. Response Surface Methodology (RSM), a Box-Behnken design-based technique, was used to identify the optimum levels of functionalization of bromelain to AuNPs. The created model's validity was confirmed, and statistical analysis revealed that the ideal functionalize conditions were 1 mM of AuNPs, functionalize with 0.59 mM bromelain concentration on 14 â„ƒ temperature and 72 h incubation time. The lowest colorimetric detection concentration (LOD) of brn-AuNPs of Hg2+ was 0.0092 ppm and 0.011 ppm for spectrophotometer and digital image analysis. As shown, digital image analysis had advantages based on the LOD result comparable to UV-VIS spectrophotometer. The practical application of the brn-AuNPs sensing was proven with mercury determination in water samples. The present study developed a robust sensor, which successfully implemented in a compact portable sensor kit, turning this sensor into a very potent tool for the development water quality biomonitoring system of Hg2+ application.

3.
Polymers (Basel) ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111988

RESUMO

Polystyrene (PS) and microplastic production pose persistent threats to the ecosystem. Even the pristine Antarctic, which is widely believed to be pollution-free, was also affected by the presence of microplastics. Therefore, it is important to comprehend the extent to which biological agents such as bacteria utilise PS microplastics as a carbon source. In this study, four soil bacteria from Greenwich Island, Antarctica, were isolated. A preliminary screening of the isolates for PS microplastics utilisation in the Bushnell Haas broth was conducted with the shake-flask method. The isolate AYDL1 identified as Brevundimonas sp. was found to be the most efficient in utilising PS microplastics. An assay on PS microplastics utilisation showed that the strain AYDL1 tolerated PS microplastics well under prolonged exposure with a weight loss percentage of 19.3% after the first interval (10 days of incubation). Infrared spectroscopy showed that the bacteria altered the chemical structure of PS while a deformation of the surface morphology of PS microplastics was observed via scanning electron microscopy after being incubated for 40 days. The obtained results may essentially indicate the utilisation of liable polymer additives or "leachates" and thus, validate the mechanistic approach for a typical initiation process of PS microplastics biodeterioration by the bacteria (AYDL1)-the biotic process.

4.
Biosensors (Basel) ; 12(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354431

RESUMO

Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Animais , Técnica de Seleção de Aptâmeros/métodos , Ligantes , DNA de Cadeia Simples , Mamíferos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-34205553

RESUMO

Predicting the crucial effect of single metal pollutants against the aquatic ecosystem has been highly debatable for decades. However, dealing with complex metal mixtures management in toxicological studies creates a challenge, as heavy metals may evoke greater toxicity on interactions with other constituents rather than individually low acting concentrations. Moreover, the toxicity mechanisms are different between short term and long term exposure of the metal toxicant. In this study, acute and chronic toxicity based on luminescence inhibition assay using newly isolated Photobacterium sp.NAA-MIE as the indicator are presented. Photobacterium sp.NAA-MIE was exposed to the mixture at a predetermined ratio of 1:1. TU (Toxicity Unit) and MTI (Mixture Toxic Index) approach presented the mixture toxicity of Hg2+ + Ag+, Hg2+ + Cu2+, Ag+ + Cu2+, Hg2+ + Ag+ + Cu2+, and Cd2+ + Cu2+ showed antagonistic effect over acute and chronic test. Binary mixture of Cu2+ + Zn2+ was observed to show additive effect at acute test and antagonistic effect at chronic test while mixture of Ni2+ + Zn2+ showing antagonistic effect during acute test and synergistic effect during chronic test. Thus, the strain is suitable and their use as bioassay to predict the risk assessment of heavy metal under acute toxicity without abandoning the advantage of chronic toxicity extrapolation.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Ecossistema , Metais Pesados/toxicidade , Photobacterium , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-34071757

RESUMO

Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important-it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.


Assuntos
Molibdênio , Animais , Biodegradação Ambiental , Oxirredução
7.
Animals (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922293

RESUMO

The development of glyphosate-resistant genetically modified organisms (GMO) has increased the use of herbicide glyphosate by several magnitudes in recent years. It is now the most commonly used pesticide globally that affects aquatic habitats, especially fish. This study aims to add new knowledge on the effect of technical grade glyphosate on several toxicity parameters and to identify the most effective parameter in predicting technical grade glyphosate chronic toxicity (seven weeks) to fish, especially Malaysia's heavily farmed red tilapia. The results show that a relatively high concentration of technical grade glyphosate is needed to induce significant changes in all tested parameters. However, the results also indicate that the bodyweight index is the most sensitive toxicity parameter in that a reduction in body weight was observed at 25 mg/L of glyphosate. Negative correlations between the glyphosate concentration and toxicity parameters such as specific growth rate (SGR), hepato-somatic index (HIS), and gonado-somatic index (GSI) were observed. The fish condition factor and feed conversion ratio were found not to be affected at the highest glyphosate concentration tested (150 mg/L). To conclude, crossbred red tilapia (O. niloticus × O. mossambicus) is one potential species for evaluating the toxic effects of technical grade glyphosate on fish.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33801387

RESUMO

The application of microorganisms in azo dye remediation has gained significant attention, leading to various published studies reporting different methods for obtaining the best dye decolouriser. This paper investigates and compares the role of methods and media used in obtaining a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely rare to find. It was demonstrated that a prolonged acclimation under low substrate availability successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites of consortium JR3 showed an improvement in mung bean's seed germination and shoot and root length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation at 0.7 g/L ammonium sulphate, pH 8, 35 °C, and RR120 concentrations of 200 ppm. Decolourisation modelling utilising response surface methodology (RSM) successfully improved decolourisation even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate, pH 8.29, 34.5 °C and 200 ppm RR120.


Assuntos
Compostos Azo , Carbono , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes
9.
Artigo em Inglês | MEDLINE | ID: mdl-33227985

RESUMO

Potentially toxic metals pollution in the Straits of Malacca warrants the development of rapid, simple and sensitive assays. Enzyme-based assays are excellent preliminary screening tools with near real-time potential. The heavy-metal assay based on the protease ficin was optimized for mercury detection using response surface methodology. The inhibitive assay is based on ficin action on the substrate casein and residual casein is determined using the Coomassie dye-binding assay. Toxic metals strongly inhibit this hydrolysis. A central composite design (CCD) was utilized to optimize the detection of toxic metals. The results show a marked improvement for the concentration causing 50% inhibition (IC50) for mercury, silver and copper. Compared to one-factor-at-a-time (OFAT) optimization, RSM gave an improvement of IC50 (mg/L) from 0.060 (95% CI, 0.030-0.080) to 0.017 (95% CI, 0.016-0.019), from 0.098 (95% CI, 0.077-0.127) to 0.028 (95% CI, 0.022-0.037) and from 0.040 (95% CI, 0.035-0.045) to 0.023 (95% CI, 0.020-0.027), for mercury, silver and copper, respectively. A near-real time monitoring of mercury concentration in the Straits of Malacca at one location in Port Klang was carried out over a 4 h interval for a total of 24 h and validated by instrumental analysis, with the result revealing an absence of mercury pollution in the sampling site.


Assuntos
Monitoramento Ambiental , Ensaios Enzimáticos , Ficina , Mercúrio , Água do Mar , Monitoramento Ambiental/métodos , Ensaios Enzimáticos/normas , Ficina/química , Mercúrio/análise , Água do Mar/química , Poluentes Químicos da Água/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-33187288

RESUMO

Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos Líquidos , Áreas Alagadas , Custos e Análise de Custo , Poluentes Ambientais/metabolismo , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/normas , Águas Residuárias/análise
11.
Polymers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172014

RESUMO

Microplastic pollution is globally recognised as a serious environmental threat due to its ubiquitous presence related primarily to improper dumping of plastic wastes. While most studies have focused on microplastic contamination in the marine ecosystem, microplastic pollution in the soil environment is generally little understood and often overlooked. The presence of microplastics affects the soil ecosystem by disrupting the soil fertility and quality, degrading the food web, and subsequently influencing both food security and human health. This study evaluates the growth and biodegradation potential of the Antarctic soil bacteria Pseudomonas sp. ADL15 and Rhodococcus sp. ADL36 on the polypropylene (PP) microplastics in Bushnell Haas (BH) medium for 40 days. The degradation was monitored based on the weight loss of PP microplastics, removal rate constant per day (K), and their half-life. The validity of the PP microplastics' biodegradation was assessed through structural changes via Fourier transform infrared spectroscopy analyses. The weight loss percentage of the PP microplastics by ADL15 and ADL36 after 40 days was 17.3% and 7.3%, respectively. The optimal growth in the BH media infused with PP microplastics was on the 40th and 30th day for ADL15 and ADL36, respectively. The infrared spectroscopic analysis revealed significant changes in the PP microplastics' functional groups following the incubation with Antarctic strains.

12.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858859

RESUMO

Rhodococci are renowned for their great metabolic repertoire partly because of their numerous putative pathways for large number of specialized metabolites such as biosurfactant. Screening and genome-based assessment for the capacity to produce surface-active molecules was conducted on Rhodococcus sp. ADL36, a diesel-degrading Antarctic bacterium. The strain showed a positive bacterial adhesion to hydrocarbon (BATH) assay, drop collapse test, oil displacement activity, microplate assay, maximal emulsification index at 45% and ability to reduce water surface tension to < 30 mN/m. The evaluation of the cell-free supernatant demonstrated its high stability across the temperature, pH and salinity gradient although no correlation was found between the surface and emulsification activity. Based on the positive relationship between the assessment of macromolecules content and infrared analysis, the extracted biosurfactant synthesized was classified as a lipopeptide. Prediction of the secondary metabolites in the non-ribosomal peptide synthetase (NRPS) clusters suggested the likelihood of the surface-active lipopeptide production in the strain's genomic data. This is the third report of surface-active lipopeptide producers from this phylotype and the first from the polar region. The lipopeptide synthesized by ADL36 has the prospect to be an Antarctic remediation tool while furnishing a distinctive natural product for biotechnological application and research.


Assuntos
Hidrocarbonetos/metabolismo , Lipopeptídeos/metabolismo , Rhodococcus/crescimento & desenvolvimento , Regiões Antárticas , Aderência Bacteriana , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Rhodococcus/metabolismo , Metabolismo Secundário , Microbiologia do Solo , Temperatura
13.
Ecotoxicol Environ Saf ; 196: 110527, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278138

RESUMO

Assessment of eco-toxicant using bioluminescent bacterial assay is a widely used and globally accepted method. In this work, a new luminescent bacterium was isolated from squid (Loligo duvauceli) and identified as Photobacterium leiognathi strain AK-MIE using 16S rRNA, phylogeny analysis. The predicted optimum conditions by RSM were 2.76% (w/v) NaCl, 2.28% (w/v) peptone, 0.34% (w/v) yeast extract, and pH 6.83 with 541,211.80 RLU of luminescent production whereas the predicted optimum conditions by ANN were 2.21% (w/v) NaCl, 2.27% (w/v) peptone, 0.39% (w/v) yeast extract, and pH 6.94 which produced 541,986.20 RLU. The validation analysis of both RSM and ANN show 0.60% and 0.69% deviation from the predicted results indicating that both models provided good quality predictions with ANN showing a superior data fitting capability for non-linear regression analysis. Toxicity tests show strain AK-MIE was sensitive to mercury (concentration causing 50% inhibition or IC50 of 0.00978 mgL-1), followed by cadmium (IC50 of 0.5288 mgL-1), copper IC50 of (0.8117 mgL-1), silver (IC50 of 1.109 mgL-1), and lead (IC50 of 10.71 mgL-1) which are more sensitive than previously isolated luminescent bacteria, suggesting that strain AK-MIE has the potential to be used in toxicity assessment of heavy metals in the environment. Based on the field trial results, several sediment samples from industrial areas in Bangi, Selangor managed to inhibit the bioluminescence of strain AK-MIE. Validation method carried out using ICP-MS proved the presence of several toxic heavy metal elements.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Substâncias Perigosas/análise , Medições Luminescentes/métodos , Metais Pesados/análise , Photobacterium/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Concentração Inibidora 50 , Metais Pesados/toxicidade , Filogenia , RNA Ribossômico 16S , Testes de Toxicidade
14.
Biomed Res Int ; 2020: 2734135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149095

RESUMO

The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R 2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.


Assuntos
Compostos Azo/farmacologia , Redes Neurais de Computação , Descoloração da Água/métodos , Bactérias/classificação , Biodegradação Ambiental , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Metagenômica , Nitrogênio/metabolismo
15.
Methods Mol Biol ; 2089: 245-250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31773659

RESUMO

The main strategy for lowering blood cholesterol levels is through the inhibition of the NADPH-dependent HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA reductase). The enzyme catalyses the reduction of HMG-CoA to mevalonate and this process is inhibited by statins that form the bulk of the therapeutic agents to treat high cholesterol since the 1970s. Newer drugs that are safer than statins are constantly being developed. The inhibition of candidate drugs to HMG-CoA reductase remains the mainstay of drug development research. The determination of the enzyme activity is important for the correct assessment of potency of the enzyme as well as determining the inhibition of potential therapeutic agents from the plant and microbial extracts. Also, this chapter covers the use of the popular four-parameter logistics model that can yield accurate estimation of the IC50 values of therapeutic agents and their 95% confidence intervals.


Assuntos
Desenvolvimento de Medicamentos/métodos , Hidroximetilglutaril-CoA Redutases/metabolismo , Acil Coenzima A/metabolismo , Animais , Produtos Biológicos/farmacologia , Colesterol/sangue , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Extratos Vegetais/farmacologia
16.
Sci Rep ; 9(1): 13642, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541137

RESUMO

In this work, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Campylobacter jejuni was developed. For this, rabbit polyclonal antibody with specificity to C. jejuni was first mixed with C. jejuni cells and unbound antibody was subsequently separated using a sequential process of centrifugation and then detected using an immobilized goat anti-rabbit IgG polyclonal antibody on the SPR sensor chip. This SIA-SPR method showed excellent sensitivity for C. jejuni with a limit of detection (LOD) of 131 ± 4 CFU mL-1 and a 95% confidence interval from 122 to 140 CFU mL-1. The method has also high specificity. The developed method showed low cross-reactivity to bacterial pathogens such as Salmonella enterica serovar Typhimurium (7.8%), Listeria monocytogenes (3.88%) and Escherichia coli (1.56%). The SIA-SPR method together with the culturing (plating) method was able to detect C. jejuni in the real chicken sample at less than 500 CFU mL-1, the minimum infectious dose for C. jejuni while a commercial ELISA kit was unable to detect the bacterium. Since the currently available detection tools rely on culturing methods, which take more than 48 hours to detect the bacterium, the developed method in this work has the potential to be a rapid and sensitive detection method for C. jejuni.


Assuntos
Anticorpos Antibacterianos/metabolismo , Infecções por Campylobacter/veterinária , Campylobacter jejuni/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Campylobacter/diagnóstico , Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Galinhas , Imunoglobulina G/metabolismo , Limite de Detecção , Doenças das Aves Domésticas/imunologia , Coelhos , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície
17.
Biomed Res Int ; 2019: 5785387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240217

RESUMO

Numerous technologies and approaches have been used in the past few decades to remove hexavalent chromium (Cr[VI]) in wastewater and the environment. However, these conventional technologies are not economical and efficient in removing Cr(VI) at a very low concentration (1-100 ppm). As an alternative, the utilization of bioremediation techniques which uses the potential of microorganisms could represent an effective technique for the detoxification of Cr(VI). In this study, we reported a newly isolated bacterium identified as Acinetobacter radioresistens sp. NS-MIE from Malaysian agricultural soil. The chromate reduction potential of strain NS-MIE was optimized using RSM and ANN techniques. The optimum condition predicted by RSM for the bacterium to reduce hexavalent chromium occurred at pH 6, 10 g/L ppm of nutrient broth (NB) concentration and 100 ppm of chromate concentration while the optimum condition predicted by ANN is at pH 6 and 10 g/L of NB concentration and of 60 ppm of chromate concentration with chromate reduction (%) of 75.13 % and 96.27 %, respectively. The analysis by the ANN model shows better prediction data with a higher R2 value of 0.9991 and smaller average absolute deviation (AAD) and root mean square error (RMSE) of 0.33 % and 0.302 %, respectively. Validation analysis showed the predicted values by RSM and ANN were close to the validation values, whereas the ANN showed the lowest deviation, 2.57%, compared to the RSM. This finding suggests that the ANN showed a better prediction and fitting ability compared to the RSM for the nonlinear regression analysis. Based on this study, A. radioresistens sp. NS-MIE exhibits strong potential characteristics as a candidate for the bioremediation of hexavalent chromium in the environment.


Assuntos
Acinetobacter/metabolismo , Cromo/metabolismo , Redes Neurais de Computação , Solo/química , Acinetobacter/classificação , Acinetobacter/isolamento & purificação , Agricultura , Análise de Variância , Biodegradação Ambiental , Filogenia , Poluentes do Solo
18.
3 Biotech ; 9(2): 64, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30729088

RESUMO

The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.

19.
3 Biotech ; 9(1): 32, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622870

RESUMO

The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.

20.
Microb Cell Fact ; 17(1): 44, 2018 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-29549881

RESUMO

BACKGROUND: Biodegradation of hydrocarbons in Antarctic soil has been reported to be achieved through the utilisation of indigenous cold-adapted microorganisms. Although numerous bacteria isolated from hydrocarbon-contaminated sites in Antarctica were able to demonstrate promising outcomes in utilising hydrocarbon components as their energy source, reports on the utilisation of hydrocarbons by strains isolated from pristine Antarctic soil are scarce. In the present work, two psychrotolerant strains isolated from Antarctic pristine soil with the competency to utilise diesel fuel as the sole carbon source were identified and optimised through conventional and response surface method. RESULTS: Two potent hydrocarbon-degraders (ADL15 and ADL36) were identified via partial 16S rRNA gene sequence analysis, and revealed to be closely related to the genus Pseudomonas and Rhodococcus sp., respectively. Factors affecting diesel degradation such as temperature, hydrocarbon concentration, pH and salt tolerance were studied. Although strain ADL36 was able to withstand a higher concentration of diesel than strain ADL15, both strains showed similar optimal condition for the cell's growth at pH 7.0 and 1.0% (w/v) NaCl at the conventional 'one-factor-at-a-time' level. Both strains were observed to be psychrotrophs with optimal temperatures of 20 °C. Qualitative and quantitative analysis were performed with a gas chromatograph equipped with a flame ionisation detector to measure the reduction of n-alkane components in diesel. In the pre-screening medium, strain ADL36 showed 83.75% of n-dodecane mineralisation while the reduction of n-dodecane by strain ADL15 was merely at 22.39%. The optimised condition for n-dodecane mineralisation predicted through response surface methodology enhanced the reduction of n-dodecane to 99.89 and 38.32% for strain ADL36 and strain ADL15, respectively. CONCLUSIONS: Strain ADL36 proves to be a better candidate for bioaugmentation operations on sites contaminated with aliphatic hydrocarbons especially in the Antarctic and other cold regions. The results obtained throughout strongly supports the use of RSM for medium optimisation.


Assuntos
Alcanos/química , Biodegradação Ambiental , Solo/química , Regiões Antárticas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...