Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Trop Med Rep ; 9(4): 130-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105115

RESUMO

Purpose of Review: Culicoides biting midges transmit several pathogens of veterinary importance in North America, but the vector status of many midge species is unresolved. Additionally, the available evidence of vector competence in these species is scattered and variable. The purpose of this review is to summarize current knowledge on confirmed and putative North American Culicoides arbovirus vectors. Recent Findings: While the vector status of Culicoides sonorensis (EHDV, BTV, VSV) and Culicoides insignis (BTV) are well established, several other potential vector species have been recently identified. Frequently, these species are implicated based primarily on host-feeding, abundance, and/or detection of arboviruses from field-collected insects, and often lack laboratory infection and transmission data necessary to fully confirm their vector status. Recent genetic studies have also indicated that some wide-ranging species likely represent several cryptic species, further complicating our understanding of their vector status. Summary: In most cases, laboratory evidence needed to fully understand the vector status of the putative Culicoides vectors is absent; however, it appears that several species are likely contributing to the transmission of arboviruses in North America.

2.
Ecol Evol ; 11(9): 4874-4886, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976855

RESUMO

The ecological success of ants has made them abundant in most environments, yet inter- and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non-nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non-nestmates. This recognition and antagonism toward non-nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.

3.
J Med Entomol ; 57(4): 1262-1269, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31961929

RESUMO

Culicoides midges vector numerous veterinary and human pathogens. Many of these diseases lack effective therapeutic treatments or vaccines to limit transmission. The only effective approach to limit disease transmission is vector control. However, current vector control for Culicoides midges is complicated by the biology of many Culicoides species and is not always effective at reducing midge populations and impacting disease transmission. The endosymbiont Wolbachia pipientis Hertig may offer an alternative control approach to limit disease transmission and affect Culicoides populations. Here the detection of Wolbachia infections in nine species of Culicoides midges is reported. Infections were detected at low densities using qPCR. Wolbachia infections were confirmed with the sequencing of a partial region of the 16S gene. Fluorescence in situ hybridization of Culicoides sonorensis Wirth and Jones adults and dissected ovaries confirm the presence of Wolbachia infections in an important vector of Bluetongue and Epizootic hemorrhagic disease viruses. The presence of Wolbachia in Culicoides populations in the United States suggests the need for further investigation of Wolbachia as a strategy to limit transmission of diseases vectored by Culicoides midges.


Assuntos
Ceratopogonidae/microbiologia , Wolbachia/isolamento & purificação , Animais , Feminino , Hibridização in Situ Fluorescente , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Estados Unidos , Wolbachia/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...