Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biointerphases ; 18(5)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902617

RESUMO

An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.


Assuntos
Vibração
2.
J Phys Chem A ; 125(1): 88-98, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33372517

RESUMO

Single atom (SA), noble metal catalysts are of interest due to high projected catalytic activity while minimizing cost. Common issues facing many synthesis methodologies include complicated processes, low yields of SA product, and production of mixtures of SA and nanoparticles (NPs). Herein we report a simple, room-temperature synthesis of single Pt-atom decorated, anatase Fe-doped TiO2 particles that leverages the Fe dopant as an engineered defect site to photodeposit and stabilize atomically dispersed Pt. Both particle morphology and Fe dopant location are based on thermodynamic principles (Gibbs-Wulff construction). CO-DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) reveals absence of bridge-bonded CO signal, confirming atomically dispersed Pt. XAS (X-ray absorption spectroscopy) of both Pt and Fe indicates Fe-O-Pt bonding that persists through catalytic cycling. Mass balance indicates that the Pt loading on single particles is 2.5 wt % Pt; the single Pt-atom decorated nanoparticle yield is 17%. Pt-containing particles show more than an order-of-magnitude increased photooxidation efficiency relative to particles containing only Fe. High single-atom-Pt yield, ease of synthesis, and high catalytic activity demonstrate the utility and promise of this method. The principles of this photodeposition synthesis allow for its generalizability toward other SA metals of catalytic interest.

3.
J Chem Phys ; 150(12): 124705, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927906

RESUMO

Complex, soft interfaces abound in the environment, biological systems, and technological applications. Probing these interfaces, particularly those buried between two condensed phases presents many challenges. The only current method capable of probing such interfaces with molecular specificity is the vibrational spectroscopy, sum frequency generation (SFG). SFG is a nonlinear method, which often results both in small signals from minority species being lost in the noise and nonunique separation of resonances. Both issues can be addressed if the complex amplitude rather than the intensity-the square of the amplitude-spectrum is measured. Thus, several methods have been developed to determine the complex spectrum by measuring the sample of interest with respect to a nonresonant material. Incorrect assumptions about the phase of the nonresonant material can result in ambiguity about the sample complex components. This ambiguity can be removed if a phase standard is identified and the phase of the chosen reference material is measured against the standard. This paper reports both verification of a phase standard-Z-cut quartz-and measurement of the phase of gold against this standard. Using this phase standard, the standard phase of Au is determined to be -222° with 532 nm excitation and ppp polarization.

4.
J Phys Chem C Nanomater Interfaces ; 123(12): 7266-7270, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949276

RESUMO

Phase-sensitive sum-frequency spectroscopy is a unique tool to interrogate the vibrational structure of interfaces. A precise understanding of the interfacial structure often relies on accurately determining the phase of χ(2), which has recently been demonstrated using a nonlinear interferometer in conjunction with a frequency-scanning picosecond laser system. Here, we implement nonlinear interferometry using a femtosecond laser system for broadband sum-frequency generation. The phase of the vibrational response from a self-assembled monolayer of octadecanethiol on gold is determined using the nonlinear femtosecond interferometer. The results are compared to those obtained using the more traditional heterodyne-detected phase measurements. Both methods give a similar phase spectrum and phase uncertainty. We also discuss the origin of the phase uncertainties and provide guidelines for further improvement.

5.
J Phys Chem A ; 122(3): 762-772, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29292995

RESUMO

Interaction between p-toluenesulfonic acid (pTSA) and water is studied at -20 °C in a CCl4 matrix. In CCl4 water exists as monomers with restricted rotational motion about its symmetry axis. Additionally, CCl4 is transparent in the hydrogen-bonded region; CCl4 thus constitutes an excellent ambient thermal energy matrix isolation medium for diagnosing interactions with water. Introducing pTSA-nH2O gives rise to two narrow resonances at 3642 cm-1 and at 2835 cm-1 plus a broad 3000-3550 cm-1 absorption. In addition, negative monomer symmetric and asymmetric stretch features relative to nominally dry CCl4 indicate that fewer water monomers exist in the cooled (-20 °C) acid solution than in room-temperature anhydrous CCl4. The negative peaks along with the broad absorption band indicate that water monomers are incorporated into clusters. The 3642 cm-1 resonance is assigned to the OH-π interaction with a cluster containing many water molecules per acid molecule. The 2835 cm-1 resonance is assigned to the (S-)O-H stretch of pTSA-dihydrate. The coexistence of these two species provides insights into interactions in this acid-water CCl4 system.

6.
J Chem Phys ; 147(6): 064201, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810790

RESUMO

Sum frequency generation (SFG) spectroscopy is a unique tool for probing the vibrational structure of numerous interfaces. Since SFG is a nonlinear spectroscopy, it has long been recognized that measuring only the intensity-the absolute square of the surface response-limits the potential of SFG for examining interfacial interactions and dynamics. The potential is unlocked by measuring the phase-sensitive or imaginary response. As with any phase, the phase-sensitive SFG response is measured relative to a reference; the spatial relationship between the phase reference and the sample modulates the observed interference intensity and impacts sensitivity and accuracy. We have designed and implemented a nonlinear interferometer to directly measure the phase-sensitive response. If the phase of the reference is known, then the interferometer produces an absolute phase of the surface. Compared to current configurations, phase accuracy and stability are greatly improved due to active stabilization of the sample-reference position. The design is versatile and thus can be used for any system that can be probed with SFG including buried interfaces and those with high vapor pressure. Feasibility and advantages of the interferometer are demonstrated using an octadecyltrichlorosilane film on fused silica.

7.
Proc Natl Acad Sci U S A ; 114(21): 5349-5354, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487487

RESUMO

Physics and chemistry of ice surfaces are not only of fundamental interest but also have important impacts on biological and environmental processes. As ice surfaces-particularly the two prism faces-come under greater scrutiny, it is increasingly important to connect the macroscopic faces with the molecular-level structure. The microscopic structure of the ubiquitous ice Ih crystal is well-known. It consists of stacked layers of chair-form hexagonal rings referred to as molecular hexagons. Crystallographic unit cells can be assembled into a regular right hexagonal prism. The bases are labeled crystallographic hexagons. The two hexagons are rotated 30° with respect to each other. The linkage between the familiar macroscopic shape of hexagonal snowflakes and either hexagon is not obvious per se. This report presents experimental data directly connecting the macroscopic shape of ice crystals and the microscopic hexagons. Large ice single crystals were used to fabricate samples with the basal, primary prism, or secondary prism faces exposed at the surface. In each case, the same sample was used to capture both a macroscopic etch pit image and an electron backscatter diffraction (EBSD) orientation density function (ODF) plot. Direct comparison of the etch pit image and the ODF plot compellingly connects the macroscopic etch pit hexagonal profile to the crystallographic hexagon. The most stable face at the ice-water interface is the smallest area face at the ice-vapor interface. A model based on the molecular structure of the prism faces accounts for this switch.

8.
Annu Rev Phys Chem ; 68: 285-304, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28301759

RESUMO

Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, Ih. Despite its prevalence, Ih remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

9.
Proc Natl Acad Sci U S A ; 114(2): 227-232, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27956637

RESUMO

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature.

11.
J Phys Chem Lett ; 7(11): 1945-9, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27159338

RESUMO

Currently, the only techniques capable of delivering molecular-level data on buried or soft interfaces are the nonlinear spectroscopic methods: sum frequency generation (SFG) and second harmonic generation (SHG). Deducing molecular information from spectra requires measuring the complex components-the amplitude and the phase-of the surface response. A new interferometer has been developed to determine these components with orders-of-magnitude improvement in uncertainty compared with current methods. Both the sample and reference spectra are generated within the interferometer, hence the label nonlinear interferometer. The interferometer configuration provides experimenters with wide latitude for both the sample enclosure and reference material choice and is thus widely applicable. The instrument is described and applied to the well-studied octadecyltrichlorosilane (OTS) film. The OTS spectra support the interpretation that variation in fabrication solvent water content and substrate preparation account for differences in OTS spectra reported in the literature.

12.
Rev Sci Instrum ; 87(3): 034103, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036790

RESUMO

The surface chemistry of ice and of water is an important topic of study, especially given the role of ice and water in shaping the environment. Although snow, granular, and polycrystalline ice are often used in research, there are applications where large surface areas of a known crystallographic plane are required. For example, fundamental spectroscopy or scattering studies rely on large area samples of known crystalline orientation. In addition, due to its slower dynamics and decreased number of molecular configurations, ice can be viewed as a reduced complexity model for the complex hydrogen bonding environment found at the surface and within the bulk of liquid water. In our studies using Sum Frequency Generation (SFG) vibrational spectroscopy, we have shown that each crystalline face has a unique spectral signature and therefore a unique chemistry and chemical activity. A reliable, reproducible, high performance method of producing large single crystal samples is needed to support this surface chemistry research. The design, construction, and use of a computer-controlled, ice-growth machine based on the Stockbarger modified Bridgeman technique is described. The instrument reliably produces relatively large single crystals that are optically flawless (that is, no visible flaws when viewed in a crossed polarizer), and in very high yield. Success rates of 95% are typical. Such performance has not been observed in the literature.

13.
Proc Natl Acad Sci U S A ; 112(45): E6096-100, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26512102

RESUMO

The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih--a fundamental hydrogen-bonded surface--due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid.

14.
J Phys Chem B ; 119(29): 9167-72, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25427311

RESUMO

Tetrahydrofuran (THF) is well-known as a clathrate former as well as a promoter for gas hydrate formation. This work examines interactions between water and tetrahydrofuran via the effect on water's vibrational spectrum. Due to water's large oscillator strength in the hydrogen-bonded region, interactions are diagnosed by isolating small clusters in a transparent medium (carbon tetrachloride in this study). A weak THF/water hydrogen bond is reflected by a 3450 cm(-1) OH-donor vibration (blue shifted from the water/water hydrogen bond) and a 3685 cm(-1) nonbonded OH stretch (blue shifted 22 cm(-1) from the decoupled OH stretch in this medium). Increasing the THF concentration results in another 20 cm(-1) blue shift of the OH-donor stretch. Additional THF does not complex with free water but rather joins with existing THF/water structures to form a cluster enriched in THF. These results complement previous work examining THF vibrations in clathrate hydrates. Together, they generate a picture in which water mediates between THF pairs--mediation that affects vibrational frequencies of both species. In addition to a frequency shift, water's hydrogen-bonded resonance gains oscillator strength due to its mediating configuration.

15.
J Chem Phys ; 141(18): 18C521, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399186

RESUMO

Water in a confined environment has a combination of fewer available configurations and restricted mobility. Both affect the spectroscopic signature. In this work, the spectroscopic signature of water in confined environments is discussed in the context of competing models for condensed water: (1) as a system of intramolecular coupled molecules or (2) as a network with intermolecular dipole-dipole coupled O-H stretches. Two distinct environments are used: the confined asymmetric environment at the ice surface and the near-isolated environment of water in an infrared transparent matrix. Both the spectroscopy and the environment are described followed by a perspective discussion of implications for the two competing models. Despite being a small molecule, water is relatively complex; perhaps not surprisingly the results support a model that blends inter- and intramolecular coupling. The frequency, and therefore the hydrogen-bond strength, appears to be a function of donor-acceptor interaction and of longer-range dipole-dipole alignment in the hydrogen-bonded network. The O-H dipole direction depends on the local environment and reflects intramolecular O-H stretch coupling.

16.
J Phys Chem B ; 118(28): 7972-80, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24784996

RESUMO

The ice-water interface plays an important role in determining the outcome of both biological and environmental processes. Under ambient pressure, the most stable form of ice is hexagonal ice (Ih). Experimentally probing the surface free energy between each of the major faces of Ih ice and the liquid is both experimentally and theoretically challenging. The basis for the challenge is the near-equality of the surface free energy for the major faces along with the tendency of water to supercool. As a result, morphology from crystallization initiated below 0 °C is kinetically controlled. The reported work circumvents supercooling consequences by providing a polycrystalline seed, followed by isothermal, equilibrium growth. Natural selection among seeded faces results in a single crystal. A record of the growth front is preserved in the frozen boule. Crystal orientation at the front is revealed by examining the boule cross section with two techniques: (1) viewing between crossed polarizers to locate the optical axis and (2) etching to distinguish the primary-prism face from the secondary-prism face. Results suggest that the most stable ice-water interface at 0 °C is the secondary-prism face, followed by the primary-prism face. The basal face that imparts the characteristic hexagonal shape to snowflakes is a distant third. The results contrast with those from freezing the vapor where the basal and primary-prism faces have comparable free energy followed by the secondary-prism face.

17.
J Phys Chem A ; 117(29): 6116-25, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23451801

RESUMO

The prism face of single crystal ice I(h) has been studied using sum frequency vibrational spectroscopy focusing on identification of resonances in the hydrogen-bonded region. Several modes have been observed at about 3400 cm(-1); each mode is both polarization and orientation dependent. The polarization capabilities of sum frequency generation (SFG) are used in conjunction with the crystal orientation to characterize three vibrational modes. These modes are assigned to three-coordinated water molecules in the top-half bilayer having different bonding and orientation motifs.


Assuntos
Gelo , Análise Espectral , Vibração , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular
18.
Cogn Process ; 14(2): 129-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23381193

RESUMO

Spatial visualization abilities are positively related to performance on science, technology, engineering, and math tasks, but this relationship is influenced by task demands and learner strategies. In two studies, we illustrate these interactions by demonstrating situations in which greater spatial ability leads to problematic performance. In Study 1, chemistry students observed and explained sets of simultaneously presented displays depicting chemical phenomena at macroscopic and particulate levels of representation. Prior to viewing, the students were asked to make predictions at the macroscopic level. Eye movement analyses revealed that greater spatial ability was associated with greater focus on the prediction-relevant macroscopic level. Unfortunately, that restricted focus was also associated with lower-quality explanations of the phenomena. In Study 2, we presented the same displays but manipulated whether participants were asked to make predictions prior to viewing. Spatial ability was again associated with restricted focus, but only for students who completed the prediction task. Eliminating the prediction task encouraged attempts to integrate the displays that related positively to performance, especially for participants with high spatial ability. Spatial abilities can be recruited in effective or ineffective ways depending on alignments between the demands of a task and the approaches individuals adopt for completing that task.


Assuntos
Atenção/fisiologia , Compreensão/fisiologia , Aprendizagem/fisiologia , Percepção Espacial/fisiologia , Movimentos Oculares , Feminino , Humanos , Masculino , Reconhecimento Visual de Modelos , Estimulação Luminosa , Valor Preditivo dos Testes , Rotação , Estudantes , Universidades , Gravação em Vídeo
19.
Langmuir ; 28(49): 16933-40, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23137145

RESUMO

Low-level iron doping has been found to alter the photo-oxidation mechanism of TiO(2) by efficiently activating molecular oxygen. In the absence of iron, TiO(2) either reduces water or stores the electron. Quantitatively, 0.5% Fe-TiO(2) is nearly three times as efficient as undoped TiO(2); 0.1% Fe-TiO(2) is twice as efficient. It is found that the efficiency boost primarily results from a more effective use of the absorbed UV photons. Extension of absorption into the visible region due to iron doping increases the efficiency by a factor of only 1.03 compared with UV-only irradiation. Characterization of these small particles reveals that particle size, crystal structure (anatase in all cases), and exposed faces are all insensitive to iron doping. Iron modifies the electronic states of TiO(2) by introducing an interband state and enhancing population of a newly identified state at +1.48 eV that acts as an efficient electron-hole recombination site. Activation of molecular oxygen effectively competes with electron-hole pair recombination.

20.
Acc Chem Res ; 45(1): 15-22, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22136280

RESUMO

Unique among small molecules, water forms a nearly tetrahedral yet flexible hydrogen-bond network. In addition to its flexibility, this network is dynamic: bonds are formed or broken on a picosecond time scale. These unique features make probing the local structure of water challenging. Despite the challenges, there is intense interest in developing a picture of the local water structure due to water's fundamental importance in many fields of chemistry. Understanding changes in the local network structure of water near solutes likely holds the key to unlock problems from analyzing parameters that determine the three dimensional structure of proteins to modeling the fate of volatile materials released into the atmosphere. Pictures of the local structure of water are heavily influenced by what is known about the structure of ice. In hexagonal I(h) ice, the most stable form of solid water under ordinary conditions, water has an equal number of donor and acceptor bonds; a kind of symmetry. This symmetric tetrahedral coordination is only approximately preserved in the liquid. The most obvious manifestation of this altered tetrahedral bonding is the greater density in the liquid compared with the solid. Formation of an interface or addition of solutes further modifies the local bonding in water. Because the O-H stretching frequency is sensitive to the environment, vibrational spectroscopy provides an excellent probe for the hydrogen-bond structure in water. In this Account, we examine both local interactions between water and small solutes and longer range interactions at the aqueous surface. Locally, the results suggest that water is not a symmetric donor or acceptor, but rather has a propensity to act as an acceptor. In interactions with hydrocarbons, action is centered at the water oxygen. For soluble inorganic salts, interaction is greater with the cation than the anion. The vibrational spectrum of the surface of salt solutions is altered compared with that of neat water. Studies of local salt-water interactions suggest that the picture of the local water structure and the ion distribution at the surface deduced from the surface vibrational spectrum should encompass both ions of the salt.


Assuntos
Gelo , Água/química , Tetracloreto de Carbono/química , Hidrocarbonetos/química , Ligação de Hidrogênio , Estrutura Molecular , Sais/química , Soluções/química , Espectrofotometria Infravermelho/métodos , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...