Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 43: 108414, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799857

RESUMO

This paleoenvironmental database features postglacial lake-sediment records from 31 study sites located across New England. The study sites span an environmental gradient from the cooler, northern and inland part of the region to the warmer, southern and coastal areas of New England. Sediment-core chronologies were determined using 14C dating, 210Pb analysis, and pollen evidence. Detailed analyses of sediment lithology, pollen, and charcoal were used to reconstruct changes in climate, vegetation, and fire at centennial temporal scales and subregional spatial scales for the last 14,000 years. Analyses of paleoenvironmental data provide insights into the rates, patterns, and drivers of ecosystem change, helping us anticipate future ecosystem dynamics and guiding present-day conservation strategies and land management.

2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161283

RESUMO

The 2020 fire season punctuated a decades-long trend of increased fire activity across the western United States, nearly doubling the total area burned in the central Rocky Mountains since 1984. Understanding the causes and implications of such extreme fire seasons, particularly in subalpine forests that have historically burned infrequently, requires a long-term perspective not afforded by observational records. We place 21st century fire activity in subalpine forests in the context of climate and fire history spanning the past 2,000 y using a unique network of 20 paleofire records. Largely because of extensive burning in 2020, the 21st century fire rotation period is now 117 y, reflecting nearly double the average rate of burning over the past 2,000 y. More strikingly, contemporary rates of burning are now 22% higher than the maximum rate reconstructed over the past two millennia, during the early Medieval Climate Anomaly (MCA) (770 to 870 Common Era), when Northern Hemisphere temperatures were ∼0.3 °C above the 20th century average. The 2020 fire season thus exemplifies how extreme events are demarcating newly emerging fire regimes as climate warms. With 21st century temperatures now surpassing those during the MCA, fire activity in Rocky Mountain subalpine forests is exceeding the range of variability that shaped these ecosystems for millennia.


Assuntos
Incêndios , Florestas , Clima , Colorado , Geografia , Estatística como Assunto , Fatores de Tempo , Wyoming
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190105, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31983326

RESUMO

Ecologists have long studied patterns, directions and tempos of change, but there is a pressing need to extend current understanding to empirical observations of abrupt changes as climate warming accelerates. Abrupt changes in ecological systems (ACES)-changes that are fast in time or fast relative to their drivers-are ubiquitous and increasing in frequency. Powerful theoretical frameworks exist, yet applications in real-world landscapes to detect, explain and anticipate ACES have lagged. We highlight five insights emerging from empirical studies of ACES across diverse ecosystems: (i) ecological systems show ACES in some dimensions but not others; (ii) climate extremes may be more important than mean climate in generating ACES; (iii) interactions among multiple drivers often produce ACES; (iv) contingencies, such as ecological memory, frequency and sequence of disturbances, and spatial context are important; and (v) tipping points are often (but not always) associated with ACES. We suggest research priorities to advance understanding of ACES in the face of climate change. Progress in understanding ACES requires strong integration of scientific approaches (theory, observations, experiments and process-based models) and high-quality empirical data drawn from a diverse array of ecosystems. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Assuntos
Mudança Climática , Ecossistema
4.
Proc Natl Acad Sci U S A ; 116(13): 5985-5990, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858312

RESUMO

Climate variations in the North Atlantic region can substantially impact surrounding continents. Notably, the Younger Dryas chronozone was named for the ecosystem effects of abrupt changes in the region at circa (ca.) 12.9-11.7 ka (millennia before 1950 AD). Holocene variations since then, however, have been hard to diagnose, and the responsiveness of terrestrial ecosystems continues to be debated. Here, we show that Holocene climate variations had spatial patterns consistent with changes in Atlantic overturning and repeatedly steepened the temperature gradient between Nova Scotia and Greenland since >8 ka. The multicentury changes correlated with hydrologic and vegetation changes in the northeast United States, including when an enhanced temperature gradient coincided with subregional droughts indicated by water-level changes at multiple coastal lakes at 4.9-4.6, 4.2-3.9, 2.8-2.1, and 1.3-1.2 ka. We assessed the variability and its effects by replicating signals across sites, using converging evidence from multiple methods, and applying forward models of the systems involved. We evaluated forest responses in the northeast United States and found that they tracked the regional climate shifts including the smallest magnitude (∼5% or 50 mm) changes in effective precipitation. Although a long-term increase in effective precipitation of >45% (>400 mm) could have prevented ecological communities from equilibrating to the continuously changing conditions, our comparisons confirm stable vegetation-climate relationships and support the use of fossil pollen records for quantitative paleoclimate reconstruction. Overall, the network of records indicates that centennial climate variability has repeatedly affected the North Atlantic region with predictable consequences.

5.
Nature ; 568(7750): 83-87, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918401

RESUMO

The latitudinal temperature gradient between the Equator and the poles influences atmospheric stability, the strength of the jet stream and extratropical cyclones1-3. Recent global warming is weakening the annual surface gradient in the Northern Hemisphere by preferentially warming the high latitudes4; however, the implications of these changes for mid-latitude climate remain uncertain5,6. Here we show that a weaker latitudinal temperature gradient-that is, warming of the Arctic with respect to the Equator-during the early to middle part of the Holocene coincided with substantial decreases in mid-latitude net precipitation (precipitation minus evapotranspiration, at 30° N to 50° N). We quantify the evolution of the gradient and of mid-latitude moisture both in a new compilation of Holocene palaeoclimate records spanning from 10° S to 90° N and in an ensemble of mid-Holocene climate model simulations. The observed pattern is consistent with the hypothesis that a weaker temperature gradient led to weaker mid-latitude westerly flow, weaker cyclones and decreased net terrestrial mid-latitude precipitation. Currently, the northern high latitudes are warming at rates nearly double the global average4, decreasing the Equator-to-pole temperature gradient to values comparable with those in the early to middle Holocene. If the patterns observed during the Holocene hold for current anthropogenically forced warming, the weaker latitudinal temperature gradient will lead to considerable reductions in mid-latitude water resources.

6.
Nature ; 554(7690): 92-96, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29388952

RESUMO

Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in 'growing degree days'-a measure of the accumulated warmth above five degrees Celsius per year-of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that climate models can adequately simulate climates for periods other than the present-day. They also demonstrate that amplified warming in recent decades increased temperatures above the mean of any century during the past 11,000 years.


Assuntos
Clima , Modelos Teóricos , Temperatura , Europa (Continente) , Fósseis , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , Camada de Gelo , América do Norte , Pólen , Estações do Ano , Processos Estocásticos
7.
Proc Natl Acad Sci U S A ; 112(43): 13261-6, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26438834

RESUMO

Many of the largest wildfires in US history burned in recent decades, and climate change explains much of the increase in area burned. The frequency of extreme wildfire weather will increase with continued warming, but many uncertainties still exist about future fire regimes, including how the risk of large fires will persist as vegetation changes. Past fire-climate relationships provide an opportunity to constrain the related uncertainties, and reveal widespread burning across large regions of western North America during past warm intervals. Whether such episodes also burned large portions of individual landscapes has been difficult to determine, however, because uncertainties with the ages of past fires and limited spatial resolution often prohibit specific estimates of past area burned. Accounting for these challenges in a subalpine landscape in Colorado, we estimated century-scale fire synchroneity across 12 lake-sediment charcoal records spanning the past 2,000 y. The percentage of sites burned only deviated from the historic range of variability during the Medieval Climate Anomaly (MCA) between 1,200 and 850 y B.P., when temperatures were similar to recent decades. Between 1,130 and 1,030 y B.P., 83% (median estimate) of our sites burned when temperatures increased ∼0.5 °C relative to the preceding centuries. Lake-based fire rotation during the MCA decreased to an estimated 120 y, representing a 260% higher rate of burning than during the period of dendroecological sampling (360 to -60 y B.P.). Increased burning, however, did not persist throughout the MCA. Burning declined abruptly before temperatures cooled, indicating possible fuel limitations to continued burning.


Assuntos
Mudança Climática/história , Incêndios/história , Modelos Teóricos , Carvão Vegetal/análise , Colorado , Florestas , Sedimentos Geológicos/química , História Medieval , Lagos , Temperatura
8.
Proc Natl Acad Sci U S A ; 110(2): 443-7, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267083

RESUMO

Ancient cultural changes have often been linked to abrupt climatic events, but the potential that climate can exert a persistent influence on human populations has been debated. Here, independent population, temperature, and moisture history reconstructions from the Bighorn Basin in Wyoming (United States) show a clear quantitative relationship spanning 13 ka, which explains five major periods of population growth/decline and ~45% of the population variance. A persistent ~300-y lag in the human demographic response conforms with either slow (~0.3%) intrinsic annual population growth rates or a lag in the environmental carrying capacity, but in either case, the population continuously adjusted to changing environmental conditions.


Assuntos
Clima , Meio Ambiente , Dinâmica Populacional , Antropologia , Radioisótopos de Carbono/análise , Demografia , História Antiga , Humanos , Hidrologia , Modelos Teóricos , Chuva , Temperatura , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...