Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 586740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305509

RESUMO

Proprioceptive error of estimated fingertip position in two-dimensional space is reduced with the addition of tactile stimulation to the fingertip. This tactile input does not disrupt the subjects' estimation strategy, as the individual error vector maps maintain their overall geometric structure. This relationship suggests an integration of proprioception and tactile sensory information to enhance proprioceptive estimation. To better understand this multisensory integration, we explored the effect of electrotactile and vibrotactile stimulation to the fingertips in place of actual contact, thus limiting interaction forces. This allowed us to discern any proprioceptive estimation improvement that arose from purely tactile stimulation. Ten right-handed and ten left-handed subjects performed a simple right-handed proprioceptive estimation task under four tactile feedback conditions: hover, touch, electrotactile, and vibrotactile. Target sets were generated for each subject, persisted across all feedback modalities, and targets were presented in randomized orders. Error maps across the workspace were generated using polynomial models of the subjects' responses. Error maps did not change shape between conditions for any right-handed subjects and changed for a single condition for two left-handed subjects. Non-parametric statistical analysis of the error magnitude shows that both modes of sensory substitution significantly reduce error for right-handed subjects, but not to the level of actual touch. Left-handed subjects demonstrated increased error for all feedback conditions compared to hover. Compared to right-handed subjects, left-handed subjects demonstrated more error in each condition except the hover condition. This is consistent with the hypothesis that the non-dominant hand is specialized for position control, while the dominant is specialized for velocity. Notably, our results suggest that non-dominant hand estimation strategies are hindered by stimuli to the fingertip. We conclude that electrotactile and vibrotactile sensory substitution only succeed in multisensory integration when applied to the dominant hand. These feedback modalities do not disrupt established dominate hand proprioceptive error maps, and existing strategies adapt to the novel input and minimize error. Since actual touch provides the best error reduction, sensory substitution lacks some unidentified beneficial information, such as familiarity or natural sensation. This missing component could also be what confounds subjects using their non-dominant hand for positional tasks.

2.
J R Soc Interface ; 15(147)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355805

RESUMO

Wild African elephants are voracious eaters, consuming 180 g of food per minute. One of their methods for eating at this speed is to sweep food into a pile and then pick it up. In this combined experimental and theoretical study, we elucidate the elephant's unique method of picking up a pile of food by compressing it with its trunk. To grab the smallest food items, the elephant forms a joint in its trunk, creating a pillar up to 11 cm tall that it uses to push down on food. Using a force sensor, we show the elephant applies greater force to smaller food pieces, in a manner that is required to solidify the particles into a lump solid, as calculated by Weibullian statistics. Elephants increase the height of the pillar with the force required, achieving up to 28% of the applied force using the self-weight of the pillar alone. This work shows that elephants are capable of modulating the force they apply to granular materials, taking advantage of their transition from fluid to solid. In the future, heavy robotic manipulators may also form joints to compress and lift objects together.


Assuntos
Elefantes/fisiologia , Extremidades/fisiologia , Comportamento Alimentar , Animais , Fenômenos Biomecânicos , Feminino , Modelos Biológicos , Atividade Motora
3.
Biochemistry ; 46(31): 8961-8, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17630697

RESUMO

Chemokine IL-8 (CXCL8) binds to its cognate receptors CXCR1 and CXCR2 to induce inflammatory responses, wound healing, tumorogenesis, and neuronal survival. Here we identify the N-loop residues in IL-8 (H18 and F21) and the receptor N-termini as the major structural determinants regulating the rate of receptor internalization, which in turn controlled the activation profile of ERK1/2, a central component of the receptor/ERK signaling pathway that dictates signal specificity. Our data further support the idea that the chemokine receptor core acts as a plastic scaffold. Thus, the diversity and intensity of inflammatory and noninflammatory responses mediated by chemokine receptors appear to be primarily determined by the initial interaction between the receptor N-terminus and the N-loop of chemokines.


Assuntos
Interleucina-8/metabolismo , Receptores de Interleucina-8/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Animais , Células COS , Quimiocina CXCL1 , Quimiocina CXCL6 , Quimiocinas CXC/metabolismo , Chlorocebus aethiops , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Humanos , Interleucina-8/genética , Interleucina-8/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Proteínas Mutantes Quiméricas/metabolismo , Fosforilação/efeitos dos fármacos , Coelhos , Receptores de Interleucina-8/genética , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...