Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3313, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346170

RESUMO

FDA proactively invests in tools to support innovation of emerging technologies, such as infectious disease next generation sequencing (ID-NGS). Here, we introduce FDA-ARGOS quality-controlled reference genomes as a public database for diagnostic purposes and demonstrate its utility on the example of two use cases. We provide quality control metrics for the FDA-ARGOS genomic database resource and outline the need for genome quality gap filling in the public domain. In the first use case, we show more accurate microbial identification of Enterococcus avium from metagenomic samples with FDA-ARGOS reference genomes compared to non-curated GenBank genomes. In the second use case, we demonstrate the utility of FDA-ARGOS reference genomes for Ebola virus target sequence comparison as part of a composite validation strategy for ID-NGS diagnostic tests. The use of FDA-ARGOS as an in silico target sequence comparator tool combined with representative clinical testing could reduce the burden for completing ID-NGS clinical trials.


Assuntos
Doenças Transmissíveis/diagnóstico , Bases de Dados de Ácidos Nucleicos/normas , Genoma , Acesso à Informação , Doenças Transmissíveis/microbiologia , Bases de Dados de Ácidos Nucleicos/organização & administração , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estados Unidos , United States Food and Drug Administration
2.
PeerJ ; 5: e3893, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29372115

RESUMO

BACKGROUND: As next generation sequence technology has advanced, there have been parallel advances in genome-scale analysis programs for determining evolutionary relationships as proxies for epidemiological relationship in public health. Most new programs skip traditional steps of ortholog determination and multi-gene alignment, instead identifying variants across a set of genomes, then summarizing results in a matrix of single-nucleotide polymorphisms or alleles for standard phylogenetic analysis. However, public health authorities need to document the performance of these methods with appropriate and comprehensive datasets so they can be validated for specific purposes, e.g., outbreak surveillance. Here we propose a set of benchmark datasets to be used for comparison and validation of phylogenomic pipelines. METHODS: We identified four well-documented foodborne pathogen events in which the epidemiology was concordant with routine phylogenomic analyses (reference-based SNP and wgMLST approaches). These are ideal benchmark datasets, as the trees, WGS data, and epidemiological data for each are all in agreement. We have placed these sequence data, sample metadata, and "known" phylogenetic trees in publicly-accessible databases and developed a standard descriptive spreadsheet format describing each dataset. To facilitate easy downloading of these benchmarks, we developed an automated script that uses the standard descriptive spreadsheet format. RESULTS: Our "outbreak" benchmark datasets represent the four major foodborne bacterial pathogens (Listeria monocytogenes, Salmonella enterica, Escherichia coli, and Campylobacter jejuni) and one simulated dataset where the "known tree" can be accurately called the "true tree". The downloading script and associated table files are available on GitHub: https://github.com/WGS-standards-and-analysis/datasets. DISCUSSION: These five benchmark datasets will help standardize comparison of current and future phylogenomic pipelines, and facilitate important cross-institutional collaborations. Our work is part of a global effort to provide collaborative infrastructure for sequence data and analytic tools-we welcome additional benchmark datasets in our recommended format, and, if relevant, we will add these on our GitHub site. Together, these datasets, dataset format, and the underlying GitHub infrastructure present a recommended path for worldwide standardization of phylogenomic pipelines.

3.
Nat Methods ; 9(5): 459-62, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22543379

RESUMO

The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Variação Genética , Humanos
4.
Nucleic Acids Res ; 40(Database issue): D54-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22009675

RESUMO

New generation sequencing platforms are producing data with significantly higher throughput and lower cost. A portion of this capacity is devoted to individual and community scientific projects. As these projects reach publication, raw sequencing datasets are submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). Archiving experimental data is the key to the progress of reproducible science. The SRA was established as a public repository for next-generation sequence data as a part of the International Nucleotide Sequence Database Collaboration (INSDC). INSDC is composed of the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at www.ncbi.nlm.nih.gov/sra from NCBI, at www.ebi.ac.uk/ena from EBI and at trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the content and structure of the SRA and report on updated metadata structures, submission file formats and supported sequencing platforms. We also briefly outline our various responses to the challenge of explosive data growth.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Genômica , Internet
5.
Nucleic Acids Res ; 40(Database issue): D13-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140104

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados como Assunto , Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , Internet , Modelos Moleculares , National Library of Medicine (U.S.) , Publicações Periódicas como Assunto , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Análise de Sequência de RNA , Bibliotecas de Moléculas Pequenas , Estados Unidos
6.
J Bacteriol ; 193(19): 5450-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784931

RESUMO

Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.


Assuntos
Genoma Bacteriano/genética , Xanthomonas/genética , Arabidopsis/microbiologia , Dados de Sequência Molecular , Oryza/microbiologia , Xanthomonas/fisiologia
7.
Insect Biochem Mol Biol ; 41(10): 770-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21640823

RESUMO

We present complete sequences of the mitochondrial genomes for two important mosquitoes, Aedes aegypti and Culex quinquefasciatus, that are major vectors of dengue virus and lymphatic filariasis, respectively. The A. aegypti mitochondrial genome is 16,655 bp in length and that of C. quinquefasciatus is 15,587 bp, yet both contain 13 protein coding genes, 22 transfer RNA (tRNA) genes, one 12S ribosomal RNA (rRNA) gene, one 16S rRNA gene and a control region (CR) in the same order. The difference in the genome size is due to the difference in the length of the control region. We also analyzed insertions of nuclear copies of mtDNA-like sequences (NUMTs) in a comparative manner between the two mosquitoes. The NUMT sequences occupy ~0.008% of the A. aegypti genome and ~0.001% of the C. quinquefasciatus genome. Several NUMTs were found localized in the introns of predicted protein coding genes in both genomes (32 genes in A. aegypti but only four in C. quinquefasciatus). None of these NUMT-containing genes had an ortholog between the two species or had paralogous copies within a genome that was also NUMT-containing. It was further observed that the NUMT-containing genes were relatively longer but had lower GC content compared to the NUMT-less paralogous copies. Moreover, stretches of homologies are present among the genic and non-genic NUMTs that may play important roles in genomic rearrangement of NUMTs in these genomes. Our study provides new insights on understanding the roles of nuclear mtDNA sequences in genome complexities of these mosquitoes.


Assuntos
Aedes/genética , Culex/genética , DNA Mitocondrial/química , Genoma de Inseto , Genoma Mitocondrial , Animais , Insetos Vetores/genética , Íntrons , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
8.
Nucleic Acids Res ; 39(Database issue): D19-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062823

RESUMO

The combination of significantly lower cost and increased speed of sequencing has resulted in an explosive growth of data submitted into the primary next-generation sequence data archive, the Sequence Read Archive (SRA). The preservation of experimental data is an important part of the scientific record, and increasing numbers of journals and funding agencies require that next-generation sequence data are deposited into the SRA. The SRA was established as a public repository for the next-generation sequence data and is operated by the International Nucleotide Sequence Database Collaboration (INSDC). INSDC partners include the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ). The SRA is accessible at http://www.ncbi.nlm.nih.gov/Traces/sra from NCBI, at http://www.ebi.ac.uk/ena from EBI and at http://trace.ddbj.nig.ac.jp from DDBJ. In this article, we present the content and structure of the SRA, detail our support for sequencing platforms and provide recommended data submission levels and formats. We also briefly outline our response to the challenge of data growth.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala
9.
Nucleic Acids Res ; 39(Database issue): D38-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097890

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , National Library of Medicine (U.S.) , Estrutura Terciária de Proteína , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de RNA , Software , Integração de Sistemas , Estados Unidos
10.
Science ; 330(6000): 86-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20929810

RESUMO

Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.


Assuntos
Cromossomos/genética , Culex/genética , Genes de Insetos , Genoma , Análise de Sequência de DNA , Aedes/genética , Animais , Anopheles/genética , Mapeamento Cromossômico , Culex/classificação , Culex/fisiologia , Elementos de DNA Transponíveis , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Insetos Vetores/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Receptores Odorantes/genética , Retroelementos
11.
Nucleic Acids Res ; 38(Database issue): D5-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19910364

RESUMO

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Algoritmos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Genoma Bacteriano , Genoma Viral , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , National Institutes of Health (U.S.) , National Library of Medicine (U.S.) , Software , Estados Unidos
12.
Nucleic Acids Res ; 38(Database issue): D870-1, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19965774

RESUMO

Next generation sequencing platforms are producing biological sequencing data in unprecedented amounts. The partners of the International Nucleotide Sequencing Database Collaboration, which includes the National Center for Biotechnology Information (NCBI), the European Bioinformatics Institute (EBI), and the DNA Data Bank of Japan (DDBJ), have established the Sequence Read Archive (SRA) to provide the scientific community with an archival destination for next generation data sets. The SRA is now accessible at http://www.ncbi.nlm.nih.gov/Traces/sra from NCBI, at http://www.ebi.ac.uk/ena from EBI and at http://www.ddbj.nig.ac.jp/sub/trace_sra-e.html from DDBJ. Users of these resources can obtain data sets deposited in any of the three SRA instances. Links and submission instructions are provided.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Análise de Sequência de DNA/métodos , Animais , Biologia Computacional/tendências , Computadores , Europa (Continente) , Humanos , Internet , Japão , National Library of Medicine (U.S.) , Análise de Sequência de DNA/tendências , Software , Estados Unidos
13.
Nucleic Acids Res ; 37(Database issue): D5-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18940862

RESUMO

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Genes , Genômica , Genótipo , National Library of Medicine (U.S.) , Fenótipo , Estrutura Terciária de Proteína , Proteômica , PubMed , Homologia de Sequência , Integração de Sistemas , Estados Unidos
14.
BMC Genomics ; 9: 204, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18452608

RESUMO

BACKGROUND: Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. RESULTS: The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. CONCLUSION: Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.


Assuntos
Evolução Molecular , Genoma Bacteriano/genética , Oryza/microbiologia , Xanthomonas/genética , Proteínas de Bactérias/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Duplicação Gênica , Rearranjo Gênico , Transferência Genética Horizontal , Genômica , Repetições de Microssatélites , Reprodutibilidade dos Testes , Fatores de Tempo
15.
Nucleic Acids Res ; 36(Database issue): D13-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18045790

RESUMO

In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , National Library of Medicine (U.S.) , Animais , Bases de Dados de Ácidos Nucleicos , Expressão Gênica , Genômica , Genótipo , Humanos , Internet , Modelos Moleculares , Fenótipo , Proteômica , Alinhamento de Sequência , Estados Unidos
16.
Science ; 317(5845): 1756-60, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17885136

RESUMO

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Assuntos
Brugia Malayi/genética , Genoma Helmíntico , Animais , Brugia Malayi/fisiologia , Caenorhabditis/genética , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Filariose/parasitologia , Humanos , Dados de Sequência Molecular
18.
Nature ; 437(7062): 1162-6, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16208317

RESUMO

Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 'Spanish' flu, one of the most deadly outbreaks in recorded history, which killed 30-50 million people worldwide, the 1957 'Asian' flu, and the 1968 'Hong Kong' flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.


Assuntos
Evolução Molecular , Genoma Viral , Vírus da Influenza A/genética , Influenza Humana/virologia , Mutagênese/genética , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , História do Século XX , História do Século XXI , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Vacinas contra Influenza/história , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/veterinária , Mutação/genética , Neuraminidase/genética , Neuraminidase/metabolismo , New York/epidemiologia , Filogenia , Setor Público , Vírus Reordenados/genética , Análise de Sequência , Fatores de Tempo , Replicação Viral
19.
Science ; 307(5713): 1321-4, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15653466

RESUMO

Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.


Assuntos
Cryptococcus neoformans/genética , Genoma Fúngico , Processamento Alternativo , Parede Celular/metabolismo , Cromossomos Fúngicos/genética , Biologia Computacional , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Elementos de DNA Transponíveis , Proteínas Fúngicas/metabolismo , Biblioteca Gênica , Genes Fúngicos , Humanos , Íntrons , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Polissacarídeos/metabolismo , RNA Antissenso , Análise de Sequência de DNA , Transcrição Gênica , Virulência , Fatores de Virulência/metabolismo
20.
Genome Biol ; 5(2): R12, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14759262

RESUMO

The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at http://www.tigr.org/software/mummer.


Assuntos
Genoma , Genômica/métodos , Software , Animais , Anopheles/genética , Gráficos por Computador , Drosophila/genética , Genoma Fúngico , Genoma Humano , Humanos , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...