Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38853869

RESUMO

In nature, organisms experience combinations of stressors. However, laboratory studies typically simplify reality and focus on the effects of an individual stressor. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H 2 O 2 ) to the human pathogen Pseudomonas aeruginosa . By treating cells with levels of flow and H 2 O 2 that commonly co-occur in nature, we discover that previous reports significantly overestimate the H 2 O 2 levels required to block bacterial growth. Specifically, we establish that flow increases H 2 O 2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H 2 O 2 levels, we identify the core H 2 O 2 regulon, characterize OxyR-mediated dynamic regulation, and dissect the redundant roles of multiple H 2 O 2 scavenging systems. By examining single-cell behavior, we serendipitously discover that the combined effects of H 2 O 2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H 2 O 2 and flow synergize to restrict bacterial colonization and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.

2.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766052

RESUMO

Antimicrobial resistance is an emerging global threat to humanity. As resistance outpaces development, new perspectives are required. For decades, scientists have prioritized chemical optimization, while largely ignoring the physical process of delivery. Here, we used biophysical simulations and microfluidic experiments to explore how fluid flow delivers antimicrobials into communities of the highly resistant pathogen Pseudomonas aeruginosa . We discover that increasing flow overcomes bacterial resistance towards three chemically distinct antimicrobials: hydrogen peroxide, gentamicin, and carbenicillin. Without flow, resistant P. aeruginosa cells generate local zones of depletion by neutralizing all three antimicrobials through degradation or chemical modification. As flow increases, delivery overwhelms neutralization, allowing antimicrobials to regain effectiveness against resistant bacteria. Additionally, we discover that cells on the edge of a community shield internal cells, and cell-cell shielding is abolished in higher flow regimes. Collectively, our quantitative experiments reveal the unexpected result that physical flow and chemical dosage are equally important to antimicrobial effectiveness. Thus, our results should inspire the incorporation of flow into the discovery, development, and implementation of antimicrobials, and could represent a new strategy to combat antimicrobial resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA