Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140782, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013028

RESUMO

To evaluate the environmental concerns associated with heavy metals (HMs) during their translocations in food chains, it is crucial to gather data on the types of HMs present in soils in order to ascertain their toxicity and potential to migrate. An overview of the findings from several physical techniques used to determine and identify the HMs, sediments, individual minerals, and organic components in contaminated agricultural and industrial soils, is provided in this review article. These studies cover a variety of X-ray-based analytical techniques, including most widely used ones like X-ray absorption near edge structure, extended X-ray absorption fine structure, X-ray diffraction, and less popular ones X-ray fluorescence, etc. When compared to techniques that rely on laboratory radiation sources, synchrotron radiation offers more precision and efficiency. These methods could pinpoint the primary mechanisms influencing the soil's ability to transport contaminants and track their subsequent migration up the food chain.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Raios X , Metais Pesados/análise , Minerais , Agricultura , Poluentes do Solo/análise
2.
Environ Res ; 246: 118045, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160969

RESUMO

Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed. Different analytical techniques were used to detect the transformation of CdO forms: Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray fluorescence analysis (XRF), Scanning electron microscopy (SEM-EDXMA and TEM), X-ray diffraction (XRD), and X-ray absorption fine structure, consists of XANES - X-ray absorption near edge structure, and EXAFS - Extended X-ray absorption fine structure. Quantitative differences in the elemental chemical composition of barley root and leaf samples were observed. The predominant root uptake of Cd was revealed. CdO-NPs were found to penetrate deeply into barley plant tissues, where they accumulated and formed new mineral phases such as Cd5(PO4)3Cl and CdSO4 according to XRD analysis. The molecular-structural state of the local Cd environment in plant samples corresponding to Cd-O and Cd-Cd. The toxicity of CdO-NPs was found to significantly affect the morphology of intracellular structures are the main organelles of photosynthesis therefore, destructive changes in them obviously reduce the level of metabolic processes ensuring the growth of plants. This study is an attempt to show results how it is possible to combine some instrumental techniques to characterize and behavior of NPs in complex matrices of living organisms.


Assuntos
Compostos de Cádmio , Hordeum , Nanopartículas Metálicas , Nanopartículas , Hordeum/metabolismo , Cádmio , Óxidos/química , Nanopartículas/toxicidade , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/farmacologia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
3.
Environ Res ; 223: 115485, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775087

RESUMO

Chromium (Cr) is reported to be hazardous to environmental components and surrounding biota when levels exceed allowable thresholds. As Cr is extensively utilized in different industries, thereby comprehensively studied for its toxicity. Along with Cr, the applications of nano-Cr or chromium oxide nanoparticles (Cr2O3-NPs) are also expanding; however, the literature is scarce or limited on their phytotoxicity. Thereby, the current work investigated the morpho-physiological insights of macro- and nanoparticles of Cr in Hordeum vulgare L. plants. The increased accumulation and translocation of Cr under the exposure of both forms disturbed the cellular metabolism that might have inhibited germination and growth as well as interfered with the photosynthesis of plants. The overall extent of toxicity was noticeably higher under nanoparticles' exposure than macroparticles of Cr. The potential cue for such phytotoxic consequences mediated by Cr nanoparticles could be an increased bioavailability of Cr ions which was also supported by their total content, mobility, and factor toxicity index. Besides, to support further these findings, synchrotron X-ray technique was used to reliably identify Cr-containing compounds in the plant tissues. The X-ray spectra of the near spectral region and the far region of the spectrum of K-edge of Cr were obtained, and it was established that the dominant crystalline phase corresponds to Cr2O3 (eskolaite) from the recorded observations. Thus, the obtained results would allow revealing the mechanism of macro- and nanoparticles of Cr induced impacts on plant at the tissue, cellular- and sub-cellular levels.


Assuntos
Hordeum , Nanopartículas , Cromo/química , Nanopartículas/toxicidade , Nanopartículas/química , Plantas , Raízes de Plantas/metabolismo
4.
Environ Geochem Health ; 45(12): 9345-9357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383335

RESUMO

In the current study, two plants, viz., Pisum sativum L. and Hordeum vulgare L., were exposed to nano- and macro-dispersed ZnO at 1, 10, and 30 times of maximal permissible concentration (MPC). The main objective of the study is to depict and compare the genotoxicity in terms of chromosomal anomalies, cytotoxicity (i.e., mitotic index), and phytotoxicity (viz., germination, morphometry, maximal quantum yield, and chlorophyll fluorescence imaging) of macro- and nano-forms of ZnO along with their accumulation and translocation. In the case of genotoxic and cytotoxic responses, the maximal effect was observed at 30 MPC, regardless of the macro- or nano-forms of ZnO. The phytotoxic observations revealed that the treatment with macro- and nano-forms of ZnO significantly affected the germination rate, germination energy, and length of roots and shoots of H. vulgare in a dose-dependent manner. The factor toxicity index of treated soil demonstrated that toxicity soared as concentrations increased and that at 30 MPC, toxicity was average and high in macro- and nano-dispersed ZnO, respectively. Furthermore, the photosynthetic parameters were observed to be negatively affected in both treatments, but the maximal effect was observed in the case of nano-dispersed form. It was noted that the mobility of nano-dispersed ZnO in the soil was higher than macro-dispersed. The increased mobility of nano-dispersed ZnO might have boosted their accumulation and translocation that subsequently led to the oxidative stress due to the accelerated production of reactive oxygen species, thus strengthen toxicity implications in plants.


Assuntos
Óxido de Zinco , Óxido de Zinco/toxicidade , Raízes de Plantas , Fotossíntese , Solo , Dano ao DNA
5.
Environ Geochem Health ; 44(2): 335-347, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33180207

RESUMO

Modeling metal sorption in soils is of great importance to predict the fate of heavy metals and to assess the actual risk driven from pollution. The present study focuses on adsorption of HM ions on two types of hydromorphic soils, including calcaric fluvisols loamic and calcaric fluvic arenosols. The individual and competitive adsorption behaviors of Cu and Zn on soils and soil constituents are evaluated comprehensively. It is established that the sorption processes were best described with the Langmuir model. The results suggest that the calcaric fluvic arenosols are more vulnerable to heavy metal input compared to fluvisols loamic. In all cases, Cu had a higher range of values of the adsorption process parameters relative to Zn. The Zn is likely to be the most critical environmental factor in such soils since it exhibited a decreased sorption under competitive conditions. The retention mechanisms of HM in hydromorphic soils are considered. Based on theoretical calculations of ion activity in soil solutions using solubility diagrams of Cu and Zn compounds, the possibility of precipitation of Cu hydroxide and Zn carbonate in the studied soils is shown. Direct physical methods of nondestructive testing (XAFS and XRD) are applied to experimentally prove the formation of these HM compounds on the surface of montmorillonite, the dominant mineral in hydromorphic soils, and calcite. Thus, the combination of both physicochemical methods and direct physical methods can provide a large amount of real information about the mechanisms of HM retain with solid phases.


Assuntos
Metais Pesados , Poluentes do Solo , Adsorção , Cobre/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Zinco/análise
6.
Environ Geochem Health ; 43(6): 2301-2315, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32794112

RESUMO

Metal speciation, linked directly to bioaccessibility and lability, is a key to be considered when assessing associated human and environmental health risks originated from anthropogenic activities. To identify the Zn and Cu speciation in the highly contaminated, technogenically transformed soils (Technosol) from the impact zone near the industrial sludge reservoirs of chemical plant (Siverskyi Donets River floodplain, southern Russia), the validity of the BCR sequential extraction procedure using the X-ray absorption fine-structure and X-ray powder diffraction (XRD) analyses was examined after each of the three stages. After the removal of exchange and carbonate-bonded Zn and Cu compounds from Technosol (first stage of extraction), the resulting residual soil showed enrichment in a great diversity of metal compounds, primarily with Me-S and Me-O bonds. The number of compounds with a higher solubility decreased at the subsequent stages of extraction. In the residual soil left over after extracting the first and second fractions, the dominant Zn-S bond appeared as würtzite (hexagonal ZnS) that made up more than 50%, while the Cu-S bond was almost completely represented only by chalcocite (Cu2S). The XRD analysis revealed the authigenic minerals of metals with S: sphalerite (cubic ZnS), würtzite (hexagonal ZnS), covellite (CuS) and bornite (Cu5FeS4). The scanning electron microscopy data confirmed that würtzite was the dominant form of Me with sulfur-containing and carbonate-containing minerals. The Zn-S bond was the main component (57%), whereas the Cu-O bond was dominant in the residual fraction (the fraction after the third-stage extraction). The results revealed that the composition of the residual fractions might include some of the most stable and hard-to-recover metal compounds of technogenic origin. Thus, the application of the novel instrumental methods, coupled with the chemical fractionation, revealed the incomplete selectivity of the extractants in the extraction of Zn and Cu in long-term highly contaminated soils.


Assuntos
Cobre/isolamento & purificação , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Zinco/isolamento & purificação , Fracionamento Químico/métodos , Cobre/análise , Cobre/química , Compostos Ferrosos/química , Humanos , Microscopia Eletrônica de Varredura , Pós , Federação Russa , Esgotos , Solo/química , Poluentes do Solo/análise , Espectrometria por Raios X , Sulfetos/química , Espectroscopia por Absorção de Raios X , Difração de Raios X , Zinco/análise , Zinco/química , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA