Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 24(24): 3881-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24131997

RESUMO

Src interactions with the plasma membrane are an important determinant of its activity. In turn, Src activity modulates its association with the membrane through binding of activated Src to phosphotyrosylated proteins. Caveolin-1 (Cav-1), a major component of caveolae, is a known Src phosphorylation target, and both were reported to regulate cell transformation. However, the nature of Src-Cav-1 interactions, a potential mechanism of their coregulation, remained unclear. Here we used fluorescence recovery after photobleaching beam-size analysis, coimmunoprecipitation, quantitative imaging, and far-Western studies with cells expressing wild type, as well as structural and activity mutants of Src-green fluorescent protein and Cav-1-monomeric red fluorescent protein, to measure their interactions with the membrane and with each other. We show dynamic Src-plasma membrane interactions, which are augmented and stabilized by Cav-1. The mechanism involves phosphorylation of Cav-1 at Tyr-14 by Src and subsequent binding of the Src SH2 domain to phospho-Cav-1, leading to accumulation of activated Src in focal adhesions. This novel Cav-1 function potentially modulates focal adhesion dynamics.


Assuntos
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Quinases da Família src/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Colesterol/biossíntese , Adesões Focais , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Ratos , Proteína Vermelha Fluorescente
2.
J Cell Biol ; 178(4): 675-86, 2007 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-17698610

RESUMO

Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src-GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src.


Assuntos
Membranas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Células COS , Proteína Tirosina Quinase CSK , Chlorocebus aethiops , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Membranas/química , Paxilina/metabolismo , Proteínas Tirosina Quinases/química , Domínios de Homologia de src , Quinases da Família src
3.
Mol Cell Biol ; 26(19): 7190-200, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980621

RESUMO

One of the least-explored aspects of cholesterol-enriched domains (rafts) in cells is the coupling between such domains in the external and internal monolayers and its potential to modulate transbilayer signal transduction. Here, we employed fluorescence recovery after photobleaching to study the effects of antibody-mediated patching of influenza hemagglutinin (HA) proteins [raft-resident wild-type HA and glycosylphosphatidylinositol-anchored HA, or the nonraft mutant HA(2A520)] on the lateral diffusion of internal-leaflet raft and nonraft Ras isoforms (H-Ras and K-Ras, respectively). Our studies demonstrate that the clustering of outer-leaflet or transmembrane raft-associated HA proteins (but not their nonraft mutants) retards the lateral diffusion of H-Ras (but not K-Ras), suggesting stabilized interactions of H-Ras with the clusters of raft-associated HA proteins. These modulations were paralleled by specific effects on the activity of H-Ras but not of the nonraft K-Ras. Thus, clustering raft-associated HA proteins facilitated the early step whereby H-Ras is converted to an activated, GTP-loaded state but inhibited the ensuing step of downstream signaling via the Mek/Erk pathway. We propose a model for the modulation of transbilayer signaling by clustering of raft proteins, where external clustering (antibody or ligand mediated) enhances the association of internal-leaflet proteins with the stabilized clusters, promoting either enhancement or inhibition of signaling.


Assuntos
Microdomínios da Membrana/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Reagentes de Ligações Cruzadas/metabolismo , Difusão/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Glicosilfosfatidilinositóis/metabolismo , Hemaglutininas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Traffic ; 7(7): 917-26, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16787400

RESUMO

Cholesterol and glycosphingolipid-enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl-beta-cyclodextrin (MbetaCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MbetaCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MbetaCD and by metabolic inhibition (compactin), and of treatment with alpha-CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MbetaCD treatment retarded the lateral diffusion of both raft and non-raft mutants, whereas similar cholesterol reduction (30-33%) by metabolic inhibition enhanced selectively the diffusion of the raft-associated mutants. Moreover, alpha-CD also inhibited the diffusion of raft and non-raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol-independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non-raft proteins.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ciclodextrinas/farmacologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Colesterol/metabolismo , Difusão , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Fosfolipídeos/metabolismo , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
J Cell Biol ; 163(4): 879-88, 2003 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-14623870

RESUMO

Lipid rafts play important roles in cellular functions through concentrating or sequestering membrane proteins. This requires proteins to differ in the stability of their interactions with lipid rafts. However, knowledge of the dynamics of membrane protein-raft interactions is lacking. We employed FRAP to measure in live cells the lateral diffusion of influenza hemagglutinin (HA) proteins that differ in raft association. This approach can detect weak interactions with rafts not detectable by biochemical methods. Wild-type (wt) HA and glycosylphosphatidylinositol (GPI)-anchored HA (BHA-PI) diffused slower than a nonraft HA mutant, but became equal to the latter after cholesterol depletion. When antigenically distinct BHA-PI and wt HA were coexpressed, aggregation of BHA-PI into immobile patches reduced wt HA diffusion rate, suggesting transient interactions with BHA-PI raft patches. Conversely, patching wt HA reduced the mobile fraction of BHA-PI, indicating stable interactions with wt HA patches. Thus, the anchoring mode determines protein-raft interaction dynamics. GPI-anchored and transmembrane proteins can share the same rafts, and different proteins can interact stably or transiently with the same raft domains.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Colesterol/deficiência , Difusão , Glicosilfosfatidilinositóis/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Modelos Moleculares , Mutação/genética , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...