Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991671

RESUMO

The enhanced proliferation of connected entities needs a deployment of innovative technologies for the next generation wireless networks. One of the critical concerns, however, is the spectrum scarcity, due to the unprecedented broadcast penetration rate nowadays. Based on this, visible light communication (VLC) has recently emerged as a viable solution to secure high-speed communications. VLC, a high data rate communication technology, has proven its stature as a promising complementary to its radio frequency (RF) counterpart. VLC is a cost-effective, energy-efficient, and secure technology that exploits the current infrastructure, specifically within indoor and underwater environments. Yet, despite their appealing capabilities, VLC systems face several limitations which constraint their potentials such as LED's limited bandwidth, dimming, flickering, line-of-sight (LOS) requirement, impact of harsh weather conditions, noise, interference, shadowing, transceiver alignment, signal decoding complexity, and mobility issue. Consequently, non-orthogonal multiple access (NOMA) has been considered an effective technique to circumvent these shortcomings. The NOMA scheme has emerged as a revolutionary paradigm to address the shortcomings of VLC systems. The potentials of NOMA are to increase the number of users, system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. Motivated by this, the presented study offers an overview of NOMA-based VLC systems. This article provides a broad scope of existing research activities of NOMA-based VLC systems. This article aims to provide firsthand knowledge of the prominence of NOMA and VLC and surveys several NOMA-enabled VLC systems. We briefly highlight the potential and capabilities of NOMA-based VLC systems. In addition, we outline the integration of such systems with several emerging technologies such as intelligent reflecting surfaces (IRS), orthogonal frequency division multiplexing (OFDM), multiple-input and multiple-output (MIMO) and unmanned aerial vehicles (UAVs). Furthermore, we focus on NOMA-based hybrid RF/VLC networks and discuss the role of machine learning (ML) tools and physical layer security (PLS) in this domain. In addition, this study also highlights diverse and significant technical hindrances prevailing in NOMA-based VLC systems. We highlight future research directions, along with provided insights that are envisioned to be helpful towards the effective practical deployment of such systems. In a nutshell, this review highlights the existing and ongoing research activities for NOMA-based VLC systems, which will provide sufficient guidelines for research communities working in this domain and it will pave the way for successful deployment of these systems.

3.
Biochimie ; 132: 54-65, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984201

RESUMO

Here, we report the biochemical characterization of a novel α-l-fucosidase with broad substrate specificity (FpFucA) isolated from the mycelial fungus Fusarium proliferatum LE1. Highly purified α-l-fucosidase was obtained from several chromatographic steps after growth in the presence of l-fucose. The purified α-l-fucosidase appeared to be a monomeric protein of 67 ± 1 kDa that was able to hydrolyze the synthetic substrate p-nitrophenyl α-l-fucopyranoside (pNPFuc), with Km = 1.1 ± 0.1 mM and kcat = 39.8 ± 1.8 s-1. l-fucose, 1-deoxyfuconojirimycin and tris(hydroxymethyl)aminomethane inhibited pNPFuc hydrolysis, with inhibition constants of 0.2 ± 0.05 mM, 7.1 ± 0.05 nM, and 12.2 ± 0.1 mM, respectively. We assumed that the enzyme belongs to subfamily A of the GH29 family (CAZy database) based on its ability to hydrolyze practically all fucose-containing oligosaccharides used in the study and the phylogenetic analysis. We found that this enzyme was a unique α-l-fucosidase that preferentially hydrolyzes the α-(1 â†’ 4)-L-fucosidic linkage present in α-L-fucobiosides with different types of linkages. As a retaining glycosidase, FpFucA is capable of catalyzing the transglycosylation reaction with alcohols (methanol, ethanol, and 1-propanol) and pNP-containing monosaccharides as acceptors. These features make the enzyme an important tool that can be used in the various modifications of valuable fucose-containing compounds.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Polissacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , Álcoois/metabolismo , Sequência de Aminoácidos , Dissacarídeos/metabolismo , Fucose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Fusarium/genética , Glicosídeos/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectrometria de Massas , Oligossacarídeos/metabolismo , Estereoisomerismo , Especificidade por Substrato , Temperatura , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação
4.
J Basic Microbiol ; 55(4): 471-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25346501

RESUMO

Enzymes capable of modifying the sulfated polymeric molecule of fucoidan are mainly produced by different groups of marine organisms: invertebrates, bacteria, and also some fungi. We have discovered and identified a new strain of filamentous fungus Fusarium proliferatum LE1 (deposition number in Russian Collection of Agricultural Microorganisms is RCAM02409), which is a potential producer of fucoidan-degrading enzymes. The strain LE1 (RCAM02409) was identified on the basis of morphological characteristics and analysis of ITS sequences of ribosomal DNA. During submerged cultivation of F. proliferatum LE1 in the nutrient medium containing natural fucoidan sources (the mixture of brown algae Laminaria digitata and Fucus vesiculosus), enzymic activities of α-L-fucosidase and arylsulfatase were inducible. These enzymes hydrolyzed model substrates, para-nitrophenyl α-L-fucopyranoside and para-nitrophenyl sulfate, respectively. However, the α-L-fucosidase is appeared to be a secreted enzyme while the arylsulfatase was an intracellular one. No detectable fucoidanase activity was found during F. proliferatum LE1 growth in submerged culture or in a static one. Comparative screening for fucoidanase/arylsulfatase/α-L-fucosidase activities among several related Fusarium strains showed a uniqueness of F. proliferatum LE1 to produce arylsulfatase and α-L-fucosidase enzymes. Apart them, the strain was shown to produce other glycoside hydrolyses.


Assuntos
Arilsulfatases/metabolismo , Fusarium/metabolismo , Polissacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , DNA Ribossômico , Fucus , Fusarium/crescimento & desenvolvimento , Fusarium/isolamento & purificação , Laminaria , Nitrobenzenos/metabolismo , Nitrofenóis/metabolismo , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...