Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(2): e202300217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37668274

RESUMO

Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.


Assuntos
Técnicas Biossensoriais , Polímeros Responsivos a Estímulos , Sistemas de Liberação de Medicamentos , Polímeros , Engenharia Tecidual
2.
ACS Biomater Sci Eng ; 9(11): 6256-6272, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874897

RESUMO

The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy.


Assuntos
Polímeros , Medicina Regenerativa , Polímeros/química , Metacrilatos/química
3.
ACS Appl Mater Interfaces ; 15(6): 8676-8690, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734329

RESUMO

Novel brush coatings were fabricated with glass surface-grafted chains copolymerized using surface-initiated atom transfer radical polymerization (SI-ATRP) from 2-(2-methoxyethoxy)ethyl methacrylate (OEGMA188) and acrylamide (AAm), taken in different proportions. P(OEGMA188-co-AAm) brushes with AAm mole fraction >44% (determined with XPS and TOF-SIMS spectroscopy) and nearly constant with the depth copolymer composition (TOF-SIMS profiling) exhibit unusual temperature-induced transformations: The contact angle of water droplets on P(OEGMA188-co-AAm) coatings increases by ∼45° with temperature, compared to 17-18° for POEGMA188 and PAAm. The thickness of coatings immersed in water and the morphology of coatings imaged in air show a temperature response for POEGMA188 (using reflectance spectroscopy and AFM, respectively), but this response is weak for P(OEGMA188-co-AAm) and absent for PAAm. This suggests mechanisms more complex than a simple transition between hydrated loose coils and hydrophobic collapsed chains. For POEGMA188, the hydrogen bonds between the ether oxygens of poly(ethylene glycol) and water hydrogens are formed below the transition temperature Tc and disrupted above Tc when polymer-polymer interactions are favored. Different hydrogen bond structures of PAAm include free amide groups, cis-trans-multimers, and trans-multimers of amide groups. Here, hydrogen bonds between free amide groups and water dominate at T < Tc but structures favored at T > Tc, such as cis-trans-multimers and trans-multimers of amide groups, can still be hydrated. The enhanced temperature-dependent response of wettability for P(OEGMA188-co-AAm) with a high mole fraction of AAm suggests the formation at Tc of more hydrophobic structures, realized by hydrogen bonding between the ether oxygens of OEGMA188 and the amide fragments of AAm, where water molecules are caged. Furthermore, P(OEGMA188-co-AAm) coatings immersed in pH buffer solutions exhibit a 'schizophrenic' behavior in wettability, with transitions that mimic LCST and UCST for pH = 3, LCST for pH = 5 and 7, and any transition blocked for pH = 9.

4.
Chem Eng J ; 446: 137048, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35601363

RESUMO

Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning.

5.
Biointerphases ; 15(3): 031006, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32443936

RESUMO

In the present work, three types of grafted brush coatings [P4VP, POEGMA246, and P(4VP-co-POEGMA246)] were successfully fabricated using graft polymerization of monomers "from the surface." The composition, thickness, and morphology of the grafted brush coatings were analyzed by TOF-SIMS, ellipsometry, and AFM, respectively. The chemical nature of the polymer surface plays a crucial role in the growth and development of the cow granulosa cells and, therefore, also oocyte-cumulus complexes. In comparison with other coatings, the P(4VP-co-POEGMA246) copolymer coating enables the formation of dispersed and small but numerous cell conglomerates and high cumulus expansion in oocyte-cumulus complexes with highly homogeneous cumulus layers surrounding the oocytes. Moreover, the cellular oxygen uptake for this coating in the presence of NaF (inhibitor glycolysis) was stimulated. This new (4VP-co-POEGMA246) copolymer nanostructured coating is a promising material for granulosa cell and oocyte-cumulus complex cultivation and possibly will have great potential for applications in veterinary and reproductive medicine.


Assuntos
Células do Cúmulo/citologia , Células da Granulosa/citologia , Oócitos/citologia , Polímeros/farmacologia , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Povidona/farmacologia
6.
RSC Adv ; 10(17): 10155-10166, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498562

RESUMO

Non-cytotoxic, temperature-responsive and antibacterial poly(di(ethylene glycol)methyl ether methacrylate) - POEGMA188 based nanocomposite coatings attached to a glass surface were successfully prepared using ATRP polymerization. The thickness, morphology and wettability of the resulting coatings were analyzed using ellipsometry, AFM and contact angle measurements, respectively. The strong impact of the thicknesses of the POEGMA188 grafted brush coatings and content of AgNPs on the morphology and temperature-induced wettability changes of the nanocomposite was demonstrated. In addition to the strong temperature-dependent antibacterial activity, the proposed nanocomposite coatings have no significant cytotoxic effect towards normal cells. Moreover, the slight anti-cancer effect of AgNPs may be suggested.

7.
Mater Sci Eng C Mater Biol Appl ; 103: 109806, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349441

RESUMO

In the presented work "smart" antibacterial surfaces based on silver nanoparticles (AgNPs) embedded in temperature-responsive poly(di(ethylene glycol)methyl ether methacrylate) - (POEGMA188) as well as poly(4-vinylpyridine) - (P4VP) coatings attached to a glass surface were successfully prepared. The composition, thickness, morphology and wettability of the resulting coatings were analyzed using ToF-SIMS, XPS, EDX, ellipsometry, AFM, SEM and CA measurements, respectively. Temperature-switched killing of the bacteria was tested against Escherichia coli ATCC 25922 (representative of Gram-negative bacteria) and Staphylococcus aureus ATCC 25923 (representative of Gram-positive bacteria) at 4 and 37 °C. In general at 4 °C no significant difference was observed between the amounts of bacteria accounted on the grafted brush coatings and within the control sample. In contrast, at 37 °C almost no bacteria were visible for temperature-responsive coating with AgNPs, whereas the growth of bacteria remains not disturbed for "pure" coating, indicating strong temperature-dependent antibacterial properties of AgNPs integrated into brushes.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polietilenoglicóis/química , Polivinil/química , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Temperatura
8.
Biomacromolecules ; 20(6): 2185-2197, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31017770

RESUMO

Poly( n-butyl methacrylate) (PBMA) or poly( n-butyl acrylate) (PBA)-grafted brush coatings attached to glass were successfully prepared using atom-transfer radical polymerization "from the surface". The thicknesses and composition of the PBMA and PBA coatings were examined using ellipsometry and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. For PBMA, the glass-transition temperature constitutes a range close to the physiological limit, which is in contrast to PBA, where the glass-transition temperature is around -55 °C. Atomic force microscopy studies at different temperatures suggest a strong morphological transformation for PBMA coatings, in contrast to PBA, where such essential changes in the surface morphology are absent. Besides, for PBMA coatings, protein adsorption depicts a strong temperature dependence. The combination of bovine serum albumin and anti-IgG structure analysis with the principal component analysis of ToF-SIMS spectra revealed a different orientation of proteins adsorbed to PBMA coatings at different temperatures. In addition, the biological activity of anti-IgG molecules adsorbed at different temperatures was evaluated through tracing the specific binding with goat IgG.


Assuntos
Acrilatos/química , Metacrilatos/química , Polímeros/química , Soroalbumina Bovina/química , Microscopia de Força Atômica , Temperatura , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...