Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (111)2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27285852

RESUMO

There are many advantages of direct nose-to-brain drug delivery in the treatment of neurological disorders. However, its application is limited by the extremely low delivery efficiency (< 1%) to the olfactory mucosa that directly connects the brain. It is crucial to develop novel techniques to deliver neurological medications more effectively to the olfactory region. The objective of this study is to develop a numerical platform to simulate and improve intranasal olfactory drug delivery. A coupled image-CFD method was presented that synthetized the image-based model development, quality meshing, fluid simulation, and magnetic particle tracking. With this method, performances of three intranasal delivery protocols were numerically assessed and compared. Influences of breathing maneuvers, magnet layout, magnetic field strength, drug release position, and particle size on the olfactory dosage were also numerically studied. From the simulations, we found that clinically significant olfactory dosage (up to 45%) were feasible using the combination of magnet layout and selective drug release. A 64 -fold higher delivery of dosage was predicted in the case with magnetophoretic guidance compared to the case without it. However, precise guidance of nasally inhaled aerosols to the olfactory region remains challenging due to the unstable nature of magnetophoresis, as well as the high sensitivity of olfactory dosage to patient-, device-, and particle-related factors.


Assuntos
Administração Intranasal , Aerossóis/administração & dosagem , Simulação por Computador , Sistemas de Liberação de Medicamentos , Aerossóis/química , Humanos , Tamanho da Partícula
2.
Anat Rec (Hoboken) ; 299(7): 853-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145450

RESUMO

The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Ar Condicionado , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Respiração , Olfato/fisiologia , Animais , Simulação por Computador , Feminino , Imageamento por Ressonância Magnética , Ventilação Pulmonar , Coelhos
3.
Theranostics ; 5(5): 443-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25767612

RESUMO

Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.


Assuntos
Aerossóis/análise , Testes Respiratórios/métodos , Pneumopatias Obstrutivas/diagnóstico , Adulto , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Modelos Teóricos , Neoplasias do Sistema Respiratório/diagnóstico , Neoplasias do Sistema Respiratório/terapia
4.
Int J Nanomedicine ; 10: 1211-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709443

RESUMO

BACKGROUND: Although direct nose-to-brain drug delivery has multiple advantages, its application is limited by the extremely low delivery efficiency (<1%) to the olfactory region where drugs can enter the brain. It is crucial to developing new methods that can deliver drug particles more effectively to the olfactory region. MATERIALS AND METHODS: We introduced a delivery method that used magnetophoresis to improve olfactory delivery efficiency. The performance of the proposed method was assessed numerically in an image-based human nose model. Influences of the magnet layout, magnet strength, drug-release position, and particle diameter on the olfactory dosage were examined. RESULTS AND DISCUSSION: Results showed that particle diameter was a critical factor in controlling the motion of nasally inhaled ferromagnetic drug particles. The optimal particle size was found to be approximately 15 µm for effective magnetophoretic guidance while avoiding loss of particles to the walls in the anterior nose. Olfactory delivery efficiency was shown to be sensitive to the position and strength of magnets and the release position of drug particles. The results of this study showed that clinically significant olfactory doses (up to 45%) were feasible using the optimal combination of magnet layout, selective drug release, and microsphere-carrier diameter. A 64-fold-higher delivery of dosage was predicted in the magnetized nose compared to the control case, which did not have a magnetic field. However, the sensitivity of olfactory dosage to operating conditions and the unstable nature of magnetophoresis make controlled guidance of nasally inhaled aerosols still highly challenging.


Assuntos
Administração Intranasal/métodos , Imãs , Microesferas , Modelos Biológicos , Nanomedicina/métodos , Mucosa Nasal , Nariz , Humanos , Mucosa Nasal/metabolismo , Nariz/química , Tamanho da Partícula
5.
PLoS One ; 9(8): e104682, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105680

RESUMO

BACKGROUND: Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. OBJECTIVE AND METHODS: In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. FINDINGS: Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. CONCLUSION: Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities.


Assuntos
Aerossóis , Asma/diagnóstico , Neoplasias Brônquicas/diagnóstico , Fractais , Pulmão/patologia , Neoplasias da Traqueia/diagnóstico , Asma/patologia , Testes Respiratórios , Brônquios/patologia , Simulação por Computador , Expiração , Humanos , Modelos Anatômicos , Traqueia/patologia
6.
Inhal Toxicol ; 26(8): 492-505, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24987981

RESUMO

CONTEXT: How the facial interface affects particle inhalability and depositions within the airway is not well understood. Previous studies of inhalation dosimetry are limited to either inhalability or deposition, rather than the two studied in a systematic way. OBJECTIVE: To systematically evaluate the effects of the facial interface on aerosol inhalability, nasal deposition and thoracic dose in a 5-year-old child airway model using a coupled imaging-computational fluid dynamics approach. METHODS: A face-nose-throat model was developed from magnetic resonance imaging scans of a 5-year-old boy. Respiration airflows and particle transport were simulated with the low Reynolds number k-ω turbulence model and the Lagrangian tracking approach. Particles ranging from 1 to 70 µm were considered in a calm air. RESULTS: Retaining the facial interface in the computational model induced substantial variations in flow dynamics, aerosol inhalability and thoracic doses. The nasal and thoracic deposition fractions were much lower with the facial interface due to the low inhalability into downward-facing nostrils and facial deposition losses. For a given inhalation rate of 10 L/min, including the facial interface reduced the thoracic dose by 5% for 2.5-µm particles and by 50% for 10 µm particles in the child model. Considering localized conditions, facial interface substantially increased depositions at the turbinate region and dorsal pharynx. CONCLUSION: This study highlighted the need to include facial interface in future numerical and in vitro studies. Findings of this study have practical implications in the design of aerosol samplers and interpretation of deposition data from studies without facial interfaces.


Assuntos
Aerossóis/administração & dosagem , Face , Modelos Biológicos , Sistema Respiratório/metabolismo , Administração por Inalação , Ar , Pré-Escolar , Humanos , Hidrodinâmica , Masculino , Tamanho da Partícula , Respiração
7.
PLoS One ; 9(1): e86593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497957

RESUMO

BACKGROUND: Intranasal olfactory drug delivery provides a non-invasive method that bypasses the Blood-Brain-Barrier and directly delivers medication to the brain and spinal cord. However, a device designed specifically for olfactory delivery has not yet been found. METHODS: In this study, a new delivery method was proposed that utilized electrophoretic forces to guide drug particles to the olfactory region. The feasibility of this method was numerically evaluated in both idealized 2-D and anatomically accurate 3-D nose models. The influence of nasal airflow, electrode strength, and drug release position were also studied on the olfactory delivery efficiency. FINDINGS: Results showed that by applying electrophoretic forces, the dosage to the olfactory region was significantly enhanced. In both 2-D and 3-D cases, electrophoretic-guided delivery achieved olfactory dosages nearly two orders of magnitude higher than that without electrophoretic forces. Furthermore, releasing drugs into the upper half of the nostril (i.e., partial release) led to olfactory dosages two times higher than releasing drugs over the entire area of the nostril. By combining the advantages of pointed drug release and appropriate electrophoretic guidance, olfactory dosages of more than 90% were observed as compared to the extremely low olfactory dosage (<1%) with conventional inhaler devices. CONCLUSION: Results of this study have important implications in developing personalized olfactory delivery protocols for the treatment of neurological disorders. Moreover, a high sensitivity of olfactory dosage was observed in relation to different pointed release positions, indicating the importance of precise particle guidance for effective olfactory delivery.


Assuntos
Algoritmos , Sistemas de Liberação de Medicamentos/métodos , Modelos Biológicos , Condutos Olfatórios/metabolismo , Preparações Farmacêuticas/administração & dosagem , Administração por Inalação , Administração Intranasal , Eletroforese , Estudos de Viabilidade , Humanos , Mucosa Nasal/metabolismo , Nariz/anatomia & histologia , Tamanho da Partícula , Preparações Farmacêuticas/química , Reprodutibilidade dos Testes
8.
Artigo em Inglês | MEDLINE | ID: mdl-24007434

RESUMO

The deposition of hygroscopic aerosols is highly complex in nature, which results from a cumulative effect of dynamic particle growth and the real-time size-specific deposition mechanisms. The objective of this study is to evaluate hygroscopic effects on the particle growth, transport, and deposition of nasally inhaled aerosols across a range of 0.2-2.5 µm in an adult image-based nose-throat model. Temperature and relative humidity fields were simulated using the LRN k-ω turbulence model and species transport model under a spectrum of thermo-humidity conditions. Particle growth and transport were simulated using a well validated Lagrangian tracking model coupled with a user-defined hygroscopic growth module. Results of this study indicate that the saturation level and initial particle size are the two major factors that determine the particle growth rate (d/d0), while the effect of inhalation flow rate is found to be not significant. An empirical correlation of condensation growth of nasally inhaled hygroscopic aerosols in adults has been developed based on a variety of thermo-humidity inhalation conditions. Significant elevated nasal depositions of hygroscopic aerosols could be induced by condensation growth for both sub-micrometer and small micrometer particulates. In particular, the deposition of initially 2.5 µm hygroscopic aerosols was observed to be 5-8 times that of inert particles under warm to hot saturated conditions. Results of this study have important implications in exposure assessment in hot humid environments, where much higher risks may be expected compared to normal conditions.


Assuntos
Aerossóis/farmacocinética , Exposição Ambiental , Tamanho da Partícula , Sistema Respiratório/efeitos dos fármacos , Adulto , Transporte Biológico , Monitoramento Ambiental , Humanos , Umidade , Modelos Biológicos , Respiração , Temperatura
9.
Respir Physiol Neurobiol ; 186(1): 22-32, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23313127

RESUMO

Direct nose-to-brain drug delivery has multiple advantages over conventional intravenous deliveries. However, demonstration of its clinical feasibility is still in adolescence due to the lack of devices that effectively deliver medications to olfactory epitheliums. The objective of this study is to numerically evaluate two olfactory delivery protocols in a MRI-based nasal airway model: (1) pointed drug release in the vestibule (i.e., vestibular intubation), and (2) deep intubation with mediation released close to the olfactory mucosa. Influences of breathing maneuvers on olfactory delivery were also studied. It was observed that the front vestibular release gave higher olfactory dosage than the posterior vestibular release, and deep intubations yielded better outcomes than vestibular intubations. Specifically, the optimal olfactory dosage was achieved with deep intubation during inhalation. Breath-holding or exhalation, which was initially considered advantageous, resulted in unfocused depositions throughout the nasal turbinate region. Results of this study have implications for developing new olfactory delivery devices and for optimizing delivery protocols specific to patients' ventilations.


Assuntos
Administração por Inalação , Administração Intranasal , Aerossóis/farmacologia , Modelos Biológicos , Mucosa Olfatória/efeitos dos fármacos , Biologia Computacional/métodos
10.
Int J Numer Method Biomed Eng ; 29(1): 17-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23293067

RESUMO

Hygroscopic growth within the human respiratory tract can be significant, which may notably alter the behavior and fate of the inhaled aerosols. The objective of this study is to evaluate the hygroscopic effects upon the transport and deposition of nasally inhaled fine-regime aerosols in children. A physiologically realistic nasal-laryngeal airway model was developed based on magnetic resonance imaging of a 5-year-old boy. Temperature and relative humidity field were simulated using the low Reynolds number k - ε turbulence model and chemical specie transport model under a spectrum of four thermo-humidity conditions. Particle growth and transport were simulated using a well validated Lagrangian tracking model coupled with a user-defined hygroscopic growth module. The subsequent aerosol depositions for the four inhalation scenarios were evaluated on a multiscale basis such as total, subregional, and cellular-level depositions. Results of this study show that a supersaturated humid environment is possible in the nasal turbinate region and can lead to significant condensation growth (d / d(0) > 10) of nasally inhaled aerosols. Depositions in the nasal airway can also be greatly enhanced by condensation growth with appropriate inhalation temperature and humidity. For subsaturated and mild inhalation conditions, the hygroscopic effects were found to be nonsignificant for total depositions, while exerting a large impact upon localized depositions.


Assuntos
Aerossóis/farmacologia , Modelos Biológicos , Cavidade Nasal , Administração Intranasal , Pré-Escolar , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA