Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 21498-21508, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640442

RESUMO

Oral delivery of cells, such as probiotics and vaccines, has proved to be inefficient since cells are generally damaged in an acidic stomach prior to arrival at the intestine to exert their health benefits. In addition, short retention in the intestine is another obstacle which affects inefficiency. To overcome these obstacles, a cell-in-shell structure was designed with pH-responsive and mucoadhesive properties. The pH-responsive shell consisting of three cationic layers of chitosan and three anionic layers of trans-cinnamic acid (t-CA) was made via layer-by-layer (LbL) assembly. t-CA layers are hydrophobic and impermeable to protons in acid, thus enhancing cell gastric resistance in the stomach, while chitosan layers endow strong interaction between the cell surface and the mucosal wall which facilitates cell mucoadhesion in the intestine. Two model cells, probiotic L. rhamnosus GG and dead Streptococcus iniae, which serve as inactivated whole-cell vaccine were chosen to test the design. Increased survival and retention during oral administration were observed for coated cells as compared with naked cells. Partial removal of the coating (20-60% removal) after acid treatment indicates that the coated vaccine can expose its surface immunogenic protein after passage through the stomach, thus facilitating vaccine immune stimulation in the intestine. As a smart oral delivery platform, this design can be extended to various macromolecules, thus providing a promising strategy to formulate oral macromolecules in the prevention and treatment of diseases at a cellular level.


Assuntos
Quitosana , Animais , Administração Oral , Concentração de Íons de Hidrogênio , Quitosana/química , Probióticos/administração & dosagem , Probióticos/farmacologia , Humanos , Camundongos , Lacticaseibacillus rhamnosus , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos
2.
J Antimicrob Chemother ; 78(10): 2581-2590, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37671807

RESUMO

OBJECTIVES: The rise of MDR Gram-negative bacteria (GNB), especially those resistant to last-resort drugs such as carbapenems and colistin, is a global health risk and calls for increased efforts to discover new antimicrobial compounds. We previously reported that polyimidazolium (PIM) compounds exhibited significant antimicrobial activity and minimal mammalian cytotoxicity. However, their mechanism of action is relatively unknown. We examined the efficacy and mechanism of action of a hydrophilic PIM (PIM5) against colistin- and meropenem-resistant clinical isolates. METHODS: MIC and time-kill testing was performed for drug-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. N-phenyl-1-naphthylamine and propidium iodide dyes were employed to determine membrane permeabilization. Spontaneous resistant mutants and single deletion mutants were generated to understand potential resistance mechanisms to the drug. RESULTS: PIM5 had the same effectiveness against colistin- and meropenem-resistant strains as susceptible strains of GNB. PIM5 exhibited a rapid bactericidal effect independent of bacterial growth phase and was especially effective in water. The polymer disrupts both the outer and cytoplasmic membranes. PIM5 binds and intercalates into bacterial genomic DNA upon entry of cells. GNB do not develop high resistance to PIM5. However, the susceptibility and uptake of the polymer is moderately affected by mutations in the two-component histidine kinase sensor BaeS. PIM5 has negligible cytotoxicity on human cells at bacterial-killing concentrations, comparable to the commercial antibiotics polymyxin B and colistin. CONCLUSIONS: PIM5 is a potent broad-spectrum antibiotic targeting GNB resistant to last-resort antibiotics.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Colistina/farmacologia , Meropeném/farmacologia , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Mamíferos
3.
Int J Biol Macromol ; 243: 125249, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295698

RESUMO

Trauma-induced articular cartilage damages are common in clinical practice. Hydrogels have been used to fill the cartilage defects and act as extracellular matrices for cell migration and tissue regeneration. Lubrication and stability of the filler materials are essential to achieve a satisfying healing effect in cartilage regeneration. However, conventional hydrogels failed to provide a lubricous effect, or could not anchor to the wound to maintain a stable curing effect. Herein, we fabricated dually cross-linked hydrogels using oxidized hyaluronic acid (OHA) and N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) methacrylate (HTCCMA). The OHA/HTCCMA hydrogels, which were dynamically cross-linked and then covalently cross-linked by photo-irradiation, showed appropriate rheological properties and self-healing capability. The hydrogels exhibited moderate and stable tissue adhesion property due to formation of dynamic covalent bonds with the cartilage surface. The coefficient of friction values were 0.065 and 0.078 for the dynamically cross-linked and double-cross-linked hydrogels, respectively, demonstrating superior lubrication. In vitro studies showed that the hydrogels had good antibacterial ability and promoted cell proliferation. In vivo studies confirmed that the hydrogels were biocompatible and biodegradable, and exhibited a robust regenerating ability for articular cartilage. This lubricant-adhesive hydrogel is expected to be promising for the treatment of joint injuries as well as regeneration.


Assuntos
Cartilagem Articular , Quitosana , Cartilagem Articular/metabolismo , Hidrogéis/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Quitosana/farmacologia , Adesivos , Lubrificantes
4.
Chem Sci ; 14(16): 4434, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123184

RESUMO

[This corrects the article DOI: 10.1039/D1SC05835E.].

5.
JACS Au ; 3(2): 276-292, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873689

RESUMO

The antimicrobial resistance crisis is a global health issue requiring discovery and development of novel therapeutics. However, conventional screening of natural products or synthetic chemical libraries is uncertain. Combination therapy using approved antibiotics with inhibitors targeting innate resistance mechanisms provides an alternative strategy to develop potent therapeutics. This review discusses the chemical structures of effective ß-lactamase inhibitors, outer membrane permeabilizers, and efflux pump inhibitors that act as adjuvant molecules of classical antibiotics. Rational design of the chemical structures of adjuvants will provide methods to impart or restore efficacy to classical antibiotics for inherently antibiotic-resistant bacteria. As many bacteria have multiple resistance pathways, adjuvant molecules simultaneously targeting multiple pathways are promising approaches to combat multidrug-resistant bacterial infections.

6.
Biomaterials ; 294: 122004, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36669302

RESUMO

New antimicrobials are urgently needed to combat Gram-negative bacteria, particularly multi-drug resistant (MDR) and phenotypically resistant biofilm species. At present, only sequence-defined alpha-peptides (e.g. polymyxin B) can selectively target Gram-negative bacterial lipopolysaccharides. We show that a copolymer, without a defined sequence, shows good potency against MDR Gram-negative bacteria including its biofilm form. The tapered blocky co-beta-peptide with controlled N-terminal hydrophobicity (#4) has strong interaction with the Gram-negative bacterial lipopolysaccharides via its backbone through electrostatic and hydrogen bonding interactions but not the Gram-positive bacterial and mammalian cell membranes so that this copolymer is non-toxic to these two latter cell types. The new #4 co-beta-peptide selectively kills Gram-negative bacteria with low cytotoxicity both in vitro and in a mouse biofilm wound infection model. This strategy provides a new concept for the design of Gram-negative selective antimicrobial peptidomimetics against MDR and biofilm species.


Assuntos
Anti-Infecciosos , Peptídeos , Animais , Camundongos , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos , Biofilmes , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Mamíferos/metabolismo
7.
J Control Release ; 352: 507-526, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341932

RESUMO

The rapid emergence and spread of drug-resistant bacteria, as one of the most pressing public health threats, are declining our arsenal of available antimicrobial drugs. Advanced antimicrobial drug delivery systems that can achieve precise and controlled release of antimicrobial agents in the microenvironment of bacterial infections will retard the development of antimicrobial resistance. A variety of extracellular enzymes are secreted by bacteria to destroy physical integrity of tissue during their invasion of host body, which can be utilized as stimuli to trigger "on-demand" release of antimicrobials. In the past decade, such bacterial enzyme responsive drug release systems have been intensively studied but few review has been released. Herein, we systematically summarize the recent progress of smart antimicrobial drug delivery systems triggered by bacteria secreted enzymes such as lipase, hyaluronidase, protease and antibiotic degrading enzymes. The perspectives and existing key issues of this field will also be discussed to fuel the innovative research and translational application in the future.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Liberação Controlada de Fármacos , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Bactérias
8.
Antimicrob Agents Chemother ; 66(10): e0059722, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094258

RESUMO

Frequent outbreaks of Salmonella Typhimurium infection, in both animal and human populations and with the potential for zoonotic transmission, pose a significant threat to the public health sector. The rapid emergence and spread of more invasive multidrug-resistant clinical isolates of Salmonella further highlight the need for the development of new drugs with effective broad-spectrum bactericidal activities. The synthesis and evaluation of main-chain cationic polyimidazolium 1 (PIM1) against several Gram-positive and Gram-negative bacteria have previously demonstrated the efficacy profile of PIM1. The present study focuses on the antibacterial and anti-biofilm activities of PIM1 against Salmonella in both in vitro and in ovo settings. In vitro, PIM1 exhibited bactericidal activity against three strains of Salmonella at a low dosage of 8 µg/mL. The anti-biofilm activity of PIM1 was evident by its elimination of planktonic cells within preformed biofilms in a dose-dependent manner. During the host cell infection process, PIM1 reduces the extracellular bacterial load, which reduces adhesion and invasion to limit the establishment of infection. Once intracellular, Salmonella strains were tolerant and protected from PIM1 treatment. In a chicken egg infection model, PIM1 exhibited therapeutic activity for both Salmonella strains, using stationary-phase and exponential-phase inocula. Moreover, PIM1 showed a remarkable efficacy against the stationary-phase inocula of drug-resistant Salmonella by eliminating the bacterial burden in >50% of the infected chicken egg embryos. Collectively, our results highlight the potential for PIM1 as a replacement therapy for existing antibiotic applications on the poultry farm, given the efficiency and low toxicity profile demonstrated in our agriculturally relevant chicken embryo model.


Assuntos
Salmonelose Animal , Infecções por Salmonella , Embrião de Galinha , Animais , Humanos , Salmonella typhimurium , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biofilmes , Galinhas , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia
9.
Biomacromolecules ; 23(5): 1873-1891, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35471022

RESUMO

In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Polímeros Responsivos a Estímulos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Humanos , Polímeros/química , Polímeros/farmacologia
10.
Chem Sci ; 13(2): 345-364, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35126968

RESUMO

The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), ß-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.

11.
Biomaterials ; 273: 120794, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887644

RESUMO

Zwitterionic polymers are classical antifouling polymers but they require specialized monomers that have cationic and anionic charges integrated into a single monomer. Herein, we show that pseudo-zwitterionic copolymers synthesized from a mixture of 2 monomers each having a single opposite polarity has excellent antibiofilm efficacy. We have discovered a new mixed-charge copolymer brush (#1-A) synthesized from 2 oppositely charged monomers, the anionic SPM (3-Sulfopropyl methacrylate) and the cationic AMPTMA ((3-Acrylamidopropyl) trimethylammonium chloride), that achieves broad spectrum in vitro antibiofilm effect of greater than 99% reductions against all six Gram-positive and Gram-negative bacteria tested. In the murine subcutaneous wound catheter infection models, the #1-A has good long-term anti-biofilm efficacy against MRSA and Pseudomonas aeruginosa of 3.41 and 3.19 orders respectively, outperforming previous mixed-charge copolymer coatings. We discovered a new method to choose the cationic/anionic pair combination to form the best antibiofilm copolymer brush coating by exploiting the solution polymerization kinetics disparity between the cationic and anionic monomers. We also showed that #1-A is softer and has higher hydration than the classical zwitterionic polymer. This study shows the possibility of achieving potent antibiofilm efficacy by combining readily available opposite singly charged monomers.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Animais , Antibacterianos/farmacologia , Biofilmes , Bactérias Gram-Positivas , Camundongos , Polímeros
12.
Drug Deliv Transl Res ; 11(4): 1438-1450, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33880733

RESUMO

We report the first demonstration of the efficient bacteria targeting properties of DNA-based polymeric micelles with high-density DNA corona. Nanoscale polymer micelles derived from DNA-b-polystyrene (DNA-b-PS) efficiently selected most tested Gram-positive strains over Gram-negative strains; single-strand DNAs were 20-fold less selective. We demonstrate that these targeting properties were derived from the interaction between densely packed DNA strands of the micelle corona and the peptidoglycan layers of Gram-positive bacteria. DNA-b-PS micelles incorporating magnetic nanoparticles (MNPs) can efficiently capture and concentrate Gram-positive bacteria suggesting the simple applications of these DNA block copolymer micelles for concentrating bacteria. Adenine (A), thymine (T), cytosine (C), and guanine (G)-rich nanostructures were fabricated, respectively, for investigating the effect of sequence on Gram-selective bacteria targeting. T-rich micelles showed the most efficient targeting properties. The targeting properties of these DNA nanostructures toward Gram-positive bacteria may have applications as a targeted therapeutic delivery system.


Assuntos
Micelas , Nanoestruturas , DNA/química , Bactérias Gram-Positivas , Nanoestruturas/química , Poliestirenos/química
13.
Nano Lett ; 21(2): 899-906, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33448223

RESUMO

Antimicrobial peptides that target the integrity of bacterial envelopes can eradicate pathogens with little development of resistance, but they often inflict nonselective toxicity toward mammalian cells. The prevailing approach to optimize the selectivity of cationic peptides has been to modify their composition. Instead, we invent a new generation of broad-spectrum antibacterial nanoconstructs with negligible mammalian cell toxicity through a competitive displacement of counter polyanions from the complementary polycations. The nanoconstruct, which has a highly cationic Au nanoparticles (NPs) core shielded by polymeric counterions, is inert in nonbacterial environments. When exposed to negatively charged bacterial envelopes, this construct sheds its polyanions, triggering a cationic Au NP/bacterial membrane interaction that rapidly kills Gram-positive and Gram-negative bacteria. The anionic charge and hydrophilicity of the polyanion provides charge neutralization for the peptide-decorated Au NP core, but it is also bacteria-displaceable. These results provide a foundation for the development of other cationic particles and polymeric counterion combinations with potent antimicrobial activity without toxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ouro , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
14.
ACS Appl Mater Interfaces ; 13(2): 3237-3245, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405504

RESUMO

Cationic polymers are promising antibacterial agents because bacteria have a low propensity to develop resistance against them, but they usually have low biocompatibility because of their hydrophobic moieties. Herein, we report a new biodegradable and biocompatible chitosan-derived cationic antibacterial polymer, 2,6-diamino chitosan (2,6-DAC). 2,6-DAC shows excellent broad-spectrum antimicrobial activity with minimum inhibitory concentrations (MICs) of 8-32 µg/mL against clinically relevant and multidrug-resistant (MDR) bacteria including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Furthermore, 2,6-DAC shows an excellent synergistic effect with various clinically relevant antibiotics proved by decreasing the MICs of the antibiotics against MDR A. baumannii and methicillin-resistant Staphylococcus aureus to <1 µg/mL. In vivo biocompatibility of 2,6-DAC is proved by a dosage of 100 mg/kg compound via oral administration and 25 mg/kg compound via intraperitoneal injection to mice; 2,6-DAC does not cause any weight loss and any significant change in liver and kidney biomarkers or the important blood electrolytes. The combinations of 2,6-DAC together with novobiocin and rifampicin show >2.4 log10 reduction of A. baumannii in murine intraperitoneal and lung infection models. The novel chitosan derivative, 2,6-DAC, can be utilized as a biocompatible broad-spectrum cationic antimicrobial agent alone or in synergistic combination with various antibiotics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Infecções Bacterianas/tratamento farmacológico , Sinergismo Farmacológico , Feminino , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
15.
Artigo em Inglês | MEDLINE | ID: mdl-33262975

RESUMO

Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs. Antibacterial polymers have attracted the interests of researchers due to their unique bactericidal mechanism and excellent antibacterial effect. This article reviews the mechanism and advantages of antimicrobial polymers and the consideration for their translation. Their applications and advances in medical device surface coating were also reviewed. The information will provide a valuable reference to design and develop antibacterial devices that are resistant to pathogenic infections.

16.
Angew Chem Int Ed Engl ; 59(17): 6819-6826, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011781

RESUMO

Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block ß-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8-b-PDM12 does not only compromise the integrity of the bacterial outer-membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8-b-PDM12 sensitizes carbapenem- and colistin-resistant GNB to multiple antibiotics in vitro and in vivo. The ß-peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α-peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Glicosilação , Testes de Sensibilidade Microbiana , Conformação Proteica em Folha beta
17.
Nat Commun ; 10(1): 4792, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636263

RESUMO

The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections.


Assuntos
Biofilmes/efeitos dos fármacos , Glucose/síntese química , Lisina/análogos & derivados , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , beta-Lactamas/síntese química , Células 3T3 , Animais , Farmacorresistência Bacteriana Múltipla , Glucose/farmacologia , Glucose/uso terapêutico , Humanos , Técnicas In Vitro , Lisina/síntese química , Lisina/farmacologia , Lisina/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Polimerização , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
18.
Biomacromolecules ; 17(3): 1170-8, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26859230

RESUMO

The development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 µg mL(-1)) while being non-hemolytic (HC50 > 10,000 µg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms. The technology described herein thus represents an innovative approach that could be used to fight deadly infectious diseases.


Assuntos
Antibacterianos/química , Glucosamina/química , Nanopartículas/química , Polilisina/química , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Linhagem Celular , Células Cultivadas , Enterococcus/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...