Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 39(4): 835-49, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11251806

RESUMO

Calcineurin is a Ca2+-calmodulin-regulated protein phosphatase that is the target of the immunosuppressive drugs cyclosporin A and FK506. Calcineurin is a heterodimer composed of a catalytic A and a regulatory B subunit. In previous studies, the calcineurin A homologue was identified and shown to be required for growth at 37 degrees C and hence for virulence of the pathogenic fungus Cryptococcus neoformans. Here, we identify the gene encoding the calcineurin B regulatory subunit and demonstrate that calcineurin B is also required for growth at elevated temperature and virulence. We show that the FKR1-1 mutation, which confers dominant FK506 resistance, results from a 6 bp duplication generating a two-amino-acid insertion in the latch region of calcineurin B. This mutation was found to reduce FKBP12-FK506 binding to calcineurin both in vivo and in vitro. Molecular modelling based on the FKBP12-FK506-calcineurin crystal structure illustrates how this mutation perturbs drug interactions with the phosphatase target. In summary, our studies reveal a central role for calcineurin B in virulence and antifungal drug action in the human fungal pathogen C. neoformans.


Assuntos
Calcineurina/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tacrolimo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Calcineurina/química , Calcineurina/genética , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , DNA Fúngico , Modelos Animais de Doenças , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Calefação , Humanos , Camundongos , Camundongos Endogâmicos DBA , Dados de Sequência Molecular , Mutagênese , Estrutura Secundária de Proteína , Recombinação Genética , Homologia de Sequência de Aminoácidos , Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/química , Virulência
2.
Fungal Genet Biol ; 29(3): 153-63, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10882532

RESUMO

Cryptococcus neoformans is an opportunistic human pathogenic fungus with a defined sexual cycle. Clinical and environmental isolates of C. neoformans are haploid, and the diploid stage of the lifecycle is thought to be transient and unstable. In contrast, we find that diploid strains are readily obtained following genetic crosses of congenic MATalpha and MATa strains. At 37 degrees C, the diploid strains grow as yeast cells with a single nucleus that is larger than a haploid nucleus, contains a 2n content of DNA by FACS analysis, and is heterozygous for the MATalpha and MATa loci. At 24 degrees C, these diploid self-fertile strains filament and sporulate, producing recombinant haploid progeny in which meiotic segregation has occurred. In contrast to dikaryotic filament cells that are typically linked by fused clamp connections during mating, self-fertile diploid strains produce monokaryotic filament cells with unfused clamp connections. We also show that these diploid strains can be transformed and sporulated and that an integrated selectable marker segregates in a mendelian fashion. The diploid state could play novel roles in the lifecycle and virulence of the organism and can be exploited for the analysis of essential genes. Finally, the observation that dimorphism is thermally regulated suggests similarities between the lifecycle of C. neoformans and other thermally dimorphic human pathogenic fungi, including Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Paracoccidioides brasiliensis, and Sporothrix schenkii.


Assuntos
Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/patogenicidade , Diploide , Proteínas de Saccharomyces cerevisiae , Cruzamentos Genéticos , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , DNA Fúngico/análise , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Haploidia , Heterozigoto , Proteínas de Homeodomínio/genética , Humanos , Microscopia de Fluorescência , Recombinação Genética , Proteínas Repressoras/genética , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , Temperatura , Transformação Genética , Virulência
3.
Fungal Genet Biol ; 29(1): 38-48, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10779398

RESUMO

Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genetics and Biology 29, 38-48. Cryptococcus neoformans is an opportunistic fungal pathogen with a defined sexual cycle and well-developed genetic and molecular approaches. Two different transformation systems have been developed, and a number of genes have been disrupted by homologous recombination. However, the frequency of homologous recombination achieved by these approaches has differed dramatically between strains of the A and D serotypes. Transformation by electroporation in serotype D strains results in homologous recombination at frequencies of 1/1000 to 1/100,000, whereas transformation by the biolistic method has resulted in gene disruption at frequencies between 2 and 50% in serotype A strains. We find that gene disruption by homologous recombination can be achieved in the congenic serotype D strain series by biolistic transformation with frequencies of approximately 1 to 4%. By this approach, we have readily disrupted the genes encoding a MAPK homolog (CPK1), the calcineurin A catalytic subunit (CNA1), and a G protein alpha subunit (GPA1). By physical and genetic methods, we show that these mutations result from targeted recombination events without ectopic integrations. Because genetic approaches can be applied in the congenic serotype D strains, our observations represent a significant advance in molecular approaches to understand the physiology and virulence of this important human pathogen.


Assuntos
Biolística/métodos , Cryptococcus neoformans/genética , Subunidades alfa de Proteínas de Ligação ao GTP , Deleção de Genes , Proteínas de Saccharomyces cerevisiae , Transformação Genética , Calcineurina , Carboxiliases/genética , Cryptococcus neoformans/classificação , Eletroporação/métodos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/genética , Imunofilinas/genética , Proteínas Quinases Ativadas por Mitógeno , Fosfoproteínas Fosfatases/genética , Plasmídeos/genética , Recombinação Genética , Proteínas de Ligação a Tacrolimo
4.
Infect Immun ; 68(2): 982-5, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10639477

RESUMO

The calcineurin gene was cloned and disrupted in serotype D strains of Cryptococcus neoformans. Serotype A and serotype D calcineurin mutants were inviable at 37 degrees C and avirulent in mice, whereas only serotype A mutants were cation stress sensitive. Thus, calcineurin plays conserved and divergent roles in serotype A and serotype D strains.


Assuntos
Calcineurina/fisiologia , Cryptococcus neoformans/patogenicidade , Animais , Sequência de Bases , Calcineurina/genética , Cryptococcus neoformans/classificação , Cryptococcus neoformans/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutação , Sorotipagem , Virulência
5.
Mol Cell Biol ; 19(10): 6929-39, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10490630

RESUMO

In Saccharomyces cerevisiae, the Wee1 family kinase Swe1p is normally stable during G(1) and S phases but is unstable during G(2) and M phases due to ubiquitination and subsequent degradation. However, perturbations of the actin cytoskeleton lead to a stabilization and accumulation of Swe1p. This response constitutes part of a morphogenesis checkpoint that couples cell cycle progression to proper bud formation, but the basis for the regulation of Swe1p degradation by the morphogenesis checkpoint remains unknown. Previous studies have identified a protein kinase, Hsl1p, and a phylogenetically conserved protein of unknown function, Hsl7p, as putative negative regulators of Swe1p. We report here that Hsl1p and Hsl7p act in concert to target Swe1p for degradation. Both proteins are required for Swe1p degradation during the unperturbed cell cycle, and excess Hsl1p accelerates Swe1p degradation in the G(2)-M phase. Hsl1p accumulates periodically during the cell cycle and promotes the periodic phosphorylation of Hsl7p. Hsl7p can be detected in a complex with Swe1p in cell lysates, and the overexpression of Hsl7p or Hsl1p produces an effective override of the G(2) arrest imposed by the morphogenesis checkpoint. These findings suggest that Hsl1p and Hsl7p interact directly with Swe1p to promote its recognition by the ubiquitination complex, leading ultimately to its destruction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Ciclo Celular/fisiologia , Modelos Biológicos , Morfogênese , Periodicidade , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases , Proteína-Arginina N-Metiltransferases , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell Biol ; 19(9): 5981-90, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10454545

RESUMO

The morphogenesis checkpoint in budding yeast delays cell cycle progression in G(2) when the actin cytoskeleton is perturbed, providing time for cells to complete bud formation prior to mitosis. Checkpoint-induced G(2) arrest involves the inhibition of the master cell cycle regulatory cyclin-dependent kinase, Cdc28p, by the Wee1 family kinase Swe1p. Results of experiments using a nonphosphorylatable CDC28(Y19F) allele suggested that the checkpoint stimulated two inhibitory pathways, one that promoted phosphorylation at tyrosine 19 (Y19) and a poorly characterized second pathway that did not require Cdc28p Y19 phosphorylation. We present the results from a genetic screen for checkpoint-defective mutants that led to the repeated isolation of the dominant CDC28(E12K) allele that is resistant to Swe1p-mediated inhibition. Comparison of this allele with the nonphosphorylatable CDC28(Y19F) allele suggested that Swe1p is still able to inhibit CDC28(Y19F) in a phosphorylation-independent manner and that both the Y19 phosphorylation-dependent and -independent checkpoint pathways in fact reflect Swe1p inhibition of Cdc28p. Remarkably, we found that a Swe1p mutant lacking catalytic activity could significantly delay the cell cycle in vivo during a physiological checkpoint response, even when expressed at single copy. The finding that a Wee1 family kinase expressed at physiological levels can inhibit a nonphosphorylatable cyclin-dependent kinase has broad implications for many checkpoint studies using such mutants in other organisms.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/antagonistas & inibidores , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Ciclo Celular , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Alelos , Sequência de Bases , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular , Primers do DNA/genética , Fase G2 , Genes Fúngicos , Mutação , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
7.
EMBO J ; 17(22): 6678-88, 1998 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-9822611

RESUMO

In the budding yeast Saccharomyces cerevisiae, a cell cycle checkpoint coordinates mitosis with bud formation. Perturbations that transiently depolarize the actin cytoskeleton cause delays in bud formation, and a 'morphogenesis checkpoint' detects the actin perturbation and imposes a G2 delay through inhibition of the cyclin-dependent kinase, Cdc28p. The tyrosine kinase Swe1p, homologous to wee1 in fission yeast, is required for the checkpoint-mediated G2 delay. In this report, we show that Swe1p stability is regulated both during the normal cell cycle and in response to the checkpoint. Swe1p is stable during G1 and accumulates to a peak at the end of S phase or in early G2, when it becomes unstable and is degraded rapidly. Destabilization of Swe1p in G2 and M phase depends on the activity of Cdc28p in complexes with B-type cyclins. Several different perturbations of actin organization all prevent Swe1p degradation, leading to the persistence or further accumulation of Swe1p, and cell cycle delay in G2.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Sequência de Bases , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Primers do DNA , Hidrólise , Morfogênese , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae
8.
J Cell Biol ; 142(6): 1487-99, 1998 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-9744879

RESUMO

A morphogenesis checkpoint in budding yeast delays cell cycle progression in response to perturbations of cell polarity that prevent bud formation (Lew, D.J., and S.I. Reed. 1995. J. Cell Biol. 129:739- 749). The cell cycle delay depends upon the tyrosine kinase Swe1p, which phosphorylates and inhibits the cyclin-dependent kinase Cdc28p (Sia, R.A.L., H.A. Herald, and D.J. Lew. 1996. Mol. Biol. Cell. 7:1657- 1666). In this report, we have investigated the nature of the defect(s) that trigger this checkpoint. A Swe1p- dependent cell cycle delay was triggered by direct perturbations of the actin cytoskeleton, even when polarity establishment functions remained intact. Furthermore, actin perturbation could trigger the checkpoint even in cells that had already formed a bud, suggesting that the checkpoint directly monitors actin organization, rather than (or in addition to) polarity establishment or bud formation. In addition, we show that the checkpoint could detect actin perturbations through most of the cell cycle. However, the ability to respond to such perturbations by delaying cell cycle progression was restricted to a narrow window of the cell cycle, delimited by the periodic accumulation of the checkpoint effector, Swe1p.


Assuntos
Actinas/metabolismo , Proteínas Tirosina Quinases/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Ciclo Celular , Proteínas de Ciclo Celular , Núcleo Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Morfogênese , Proteínas Tirosina Quinases/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Tiazóis/farmacologia , Tiazolidinas
9.
Genes Dev ; 12(16): 2587-97, 1998 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9716410

RESUMO

Ubiquitin-mediated proteolysis controls the abundance of many cell cycle regulatory proteins. Recent work in Saccharomyces cerevisiae suggests that a complex consisting of Cdc53, Skp1, and a third component known as an F-box protein (termed SCF) in combination with Cdc34 specifically targets regulatory proteins for degradation, and that substrate specificity is likely to be mediated by the F-box subunit. A screen for genetic interactions with a cdc34 mutation yielded MET30, which encodes an F-box protein. MET30 is an essential gene required for cell cycle progression and met30 mutations interact genetically with mutations in SCF components. Furthermore, physical interactions between Met30, Cdc53, Cdc34, and Skp1 in vivo provide evidence for an SCFMet30 complex. We demonstrate the involvement of Met30 in the degradation of the Cdk-inhibitory kinase Swe1. Swe1 is stabilized in met30 mutants and GST-Met30 pull-down experiments reveal that Met30 specifically binds Swe1 in vivo. Furthermore, extracts prepared from cdc34 or met30 mutants are defective in polyubiquitination of Swe1. Taken together, these data suggest that SCF-mediated proteolysis may contribute to the regulation of entry into mitosis. Our data, in combination with previously published results, also provide evidence for distinct SCF complexes in vivo and support the idea that their F-box subunits mediate SCF substrate specificity.


Assuntos
Proteínas Culina , Ligases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Elementos Facilitadores Genéticos , Proteínas F-Box , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ligases/genética , Mitose/fisiologia , Dados de Sequência Molecular , Fosforilação , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Proteínas Quinases Associadas a Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Tirosina/metabolismo , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo
10.
Mol Biol Cell ; 7(11): 1657-66, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8930890

RESUMO

A morphogenesis checkpoint in budding yeast delays nuclear division (and subsequent cell cycle progression) in cells that have failed to make a bud. We show that the ability of this checkpoint to delay nuclear division requires the SWE1 gene, encoding a protein kinase that inhibits the master cell cycle regulatory kinase Cdc28. The timing of nuclear division in cells that cannot make a bud is exquisitely sensitive to the dosage of SWE1 and MIH1 genes, which control phosphorylation of Cdc28 at tyrosine 19. In contrast, the timing of nuclear division in budded cells does not rely on Cdc28 phosphorylation, suggesting that the morphogenesis checkpoint somehow turns on this regulatory pathway. We show that SWE1 mRNA levels fluctuate during the cell cycle and are elevated in cells that cannot make a bud. However, regulation of SWE1 mRNA levels by the checkpoint is indirect, acting through a feedback loop requiring Swe1 activity. Further, the checkpoint is capable of delaying nuclear division even when SWE1 transcription is deregulated. We propose that the checkpoint delays nuclear division through post-translational regulation of Swe1 and that transcriptional feedback loops enhance the efficacy of the checkpoint.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B , Fatores de Troca do Nucleotídeo Guanina , Mitose , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Ciclinas/genética , Ciclinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Morfogênese , Mutação , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica
11.
Mol Cell Biol ; 15(10): 5279-87, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7565676

RESUMO

Ime2p is a protein kinase that is expressed only during meiosis in Saccharomyces cerevisiae. Ime2p stimulates early, middle, and late meiotic gene expression and down-regulates expression of IME1, which specifies an activator of early meiotic genes that acts independently of Ime2p. We have identified a new gene, IDS2 (for IME2-dependent signaling), which has a functional relationship to Ime2p. An ids2 null mutation delays down-regulation of IME1 and expression of middle and late meiotic genes. In an ime1 null mutant that express IME2 from the GAL1 promoter (ime1 delta PGAL1-IME2 mutant), early meiotic gene expression depends only upon Ime2p. In such strains, Ids2p is dispensable for expression of the early genes HOP1 and SPO13 but is essential for expression of the middle and late genes SPS1, SPS2, and SPS100. Ids2p is also essential for the autoregulatory pathway through which Ime2p activates its own expression via the IME2 upstream activation sequences (UAS). An PGAL1-IME2 derivative that produces a truncated Ime2p (lacking its C-terminal 174 residues) permits IME2 UAS activation in the absence of Ids2p. This observation suggests that Ids2p acts upstream of Ime2p or that Ids2p and Ime2p act in independent, convergent pathways to stimulate IME2 UAS activity. Accumulation of epitope-tagged Ids2p derivatives is greatest in growing cells and declines during meiosis. We propose that Ids2p acts indirectly to modify Ime2p activity, thus permitting Ime2p to carry out later meiotic functions.


Assuntos
Proteínas de Ciclo Celular , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Meiose/genética , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Ligação Genética , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão , Sequências Reguladoras de Ácido Nucleico/genética , Saccharomyces cerevisiae/fisiologia , Análise de Sequência de DNA , Transdução de Sinais , Esporos Fúngicos , Supressão Genética
12.
Genetics ; 133(4): 775-84, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8462841

RESUMO

IME1 is required in yeast for meiosis and for expression of IME2 and other early meiotic genes. IME1 is a 360-amino acid polypeptide with central and C-terminal tyrosine-rich regions. We report here that a fusion protein composed of the lexA DNA-binding domain and IME1 activates transcription in vivo of a reporter gene containing upstream lexA binding sites. Activation by the fusion protein shares several features with natural IME1 activity: both are dependent on the RIM11 gene product; both are impaired by the same ime1 missense mutations; both are restored by intragenic suppressors. The central tyrosine-rich region is sufficient to activate transcription when fused to lexA. Deletion of this putative activation domain results in a defective IME1 derivative. Function of the deletion derivative is restored by fusion to the acidic Herpesvirus VP16 activation domain. The C-terminal tyrosine-rich region is dispensable for transcriptional activation; rather it renders activation dependent upon starvation and RIM11. Immunofluorescence studies indicate that an IME1-lacZ fusion protein is concentrated in the nucleus. These observations are consistent with a model in which IME1 normally stimulates IME2 expression by providing a transcriptional activation domain at the IME2 5' regulatory region.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Serina Endopeptidases , Fatores de Transcrição , Transcrição Gênica , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
13.
EMBO J ; 9(3): 965-70, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2178928

RESUMO

A 26 kd protein reactive with antiserum to the transactivator tat of the Human Immunodeficiency Virus Type 1 (HIV-1) has been detected in virus producing cells. The 26 kd protein is shown to be a tripartite fusion protein including coding sequences of the tat, envelope (env) and regulator of virion expression (rev) genes. Fusion of these coding sequences occurs by use of a previously undescribed exon within env. This 26 kd protein, designated tnv, has tat but no rev activity detectable with the assay used. The existence of other less abundant tat and rev related proteins in HIV-1 producing cells is also noted.


Assuntos
Produtos do Gene rev/genética , Produtos do Gene tat/genética , Genes Virais , HIV-1/genética , Transativadores/genética , Proteínas do Envelope Viral/genética , Sequência de Bases , Mapeamento Cromossômico , Biblioteca Gênica , Produtos do Gene rev/análise , Produtos do Gene tat/análise , Humanos , Dados de Sequência Molecular , Sondas RNA , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/análise , Homologia de Sequência do Ácido Nucleico , Transfecção , Proteínas do Envelope Viral/análise , Produtos do Gene rev do Vírus da Imunodeficiência Humana , Produtos do Gene tat do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA