Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(13): 6501-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677613

RESUMO

During replication, DNA damage can challenge replication fork progression and cell viability. Homologous Recombination (HR) and Translesion Synthesis (TLS) pathways appear as major players involved in the resumption and completion of DNA replication. How both pathways are coordinated in human cells to maintain genome stability is unclear. Numerous helicases are involved in HR regulation. Among them, the helicase FBH1 accumulates at sites of DNA damage and potentially constrains HR via its anti-recombinase activity. However, little is known about its regulation in vivo. Here, we report a mechanism that controls the degradation of FBH1 after DNA damage. Firstly, we found that the sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is critical for FBH1 recruitment to replication factories or DNA damage sites. We then showed the anti-recombinase activity of FBH1 is partially dependent on its interaction with PCNA. Intriguingly, after its re-localization, FBH1 is targeted for degradation by the Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2))-PCNA pathway via a PCNA-interacting peptide (PIP) degron. Importantly, expression of non-degradable FBH1 mutant impairs the recruitment of the TLS polymerase eta to chromatin in UV-irradiated cells. Thus, we propose that after DNA damage, FBH1 might be required to restrict HR and then degraded by the Cdt2-proteasome pathway to facilitate TLS pathway.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Cromatina/enzimologia , DNA Helicases/química , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Raios Ultravioleta
2.
PLoS Genet ; 7(12): e1002409, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22194698

RESUMO

The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.


Assuntos
Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Recombinação Homóloga/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Rad51 Recombinase/genética
3.
Cell ; 145(4): 529-42, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565612

RESUMO

Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.


Assuntos
Proteína BRCA2/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Reparo do DNA , Humanos , Proteína Homóloga a MRE11 , Dados de Sequência Molecular , Alinhamento de Sequência
4.
PLoS One ; 6(4): e18658, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21541310

RESUMO

Deoxyuridine triphosphatase (dUTPase) enzyme is an essential enzyme that protects DNA against uracil incorporation. No organism can tolerate the absence of this activity. In this article, we show that dUTPase function is conserved between E. coli (Escherichia coli), yeast (Saccharomyces cerevisiae) and Arabidopsis (Arabidopsis thaliana) and that it is essential in Arabidopsis as in both micro-organisms. Using a RNA interference strategy, plant lines were generated with a diminished dUTPase activity as compared to the wild-type. These plants are sensitive to 5-fluoro-uracil. As an indication of DNA damage, inactivation of dUTPase results in the induction of AtRAD51 and AtPARP2, which are involved in DNA repair. Nevertheless, RNAi/DUT1 constructs are compatible with a rad51 mutation. Using a TUNEL assay, DNA damage was observed in the RNAi/DUT1 plants. Finally, plants carrying a homologous recombination (HR) exclusive substrate transformed with the RNAi/DUT1 construct exhibit a seven times increase in homologous recombination events. Increased HR was only detected in the plants that were the most sensitive to 5-fluoro-uracils, thus establishing a link between uracil incorporation in the genomic DNA and HR. Our results show for the first time that genetic instability provoked by the presence of uracils in the DNA is poorly tolerated and that this base misincorporation globally stimulates HR in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Genes de Plantas/genética , Pirofosfatases/metabolismo , Recombinação Genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Fragmentação do DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Etanol/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Genoma de Planta/genética , Marcação In Situ das Extremidades Cortadas , Cinética , Mutação/genética , Pirofosfatases/genética , Interferência de RNA/efeitos dos fármacos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinação Genética/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Uracila/metabolismo
5.
DNA Repair (Amst) ; 9(5): 567-78, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20227352

RESUMO

The SOS screen, as originally described by Perkins et al. (1999) [7], was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS(+) candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS(+) candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS(+) candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Resposta SOS em Genética , Animais , Arabidopsis/citologia , Células Cultivadas , DNA Bacteriano/genética , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação da Expressão Gênica de Plantas , Humanos , Meiose/genética , Camundongos , Viabilidade Microbiana , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Pirofosfatases/deficiência , Pirofosfatases/genética , Interferência de RNA , RNA de Plantas/metabolismo , Rad51 Recombinase/genética , Homologia de Sequência do Ácido Nucleico
6.
Proc Natl Acad Sci U S A ; 103(23): 8768-73, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16731627

RESUMO

The BRCA2 tumor suppressor plays an important role in the repair of DNA damage by homologous recombination, also termed homology-directed repair (HDR). Human BRCA2 is 3,418 aa and is composed of several domains. The central part of the protein contains multiple copies of a motif that binds the Rad51 recombinase (the BRC repeat), and the C terminus contains domains that have structural similarity to domains in the ssDNA-binding protein replication protein A (RPA). To gain insight into the role of BRCA2 in the repair of DNA damage, we fused a single (BRC3, BRC4) or multiple BRC motifs to the large RPA subunit. Expression of any of these protein fusions in Brca2 mutant cells substantially improved HDR while suppressing mutagenic repair. A fusion containing a Rad52 ssDNA-binding domain also was active in HDR. Mutations that reduced ssDNA or Rad51 binding impaired the ability of the fusion proteins to function in HDR. The high level of spontaneous chromosomal aberrations in Brca2 mutant cells was largely suppressed by the BRC-RPA fusion proteins, supporting the notion that the primary role of BRCA2 in maintaining genomic integrity is in HDR, specifically to deliver Rad51 to ssDNA. The fusion proteins also restored Rad51 focus formation and cellular survival in response to DNA damaging agents. Because as little as 2% of BRCA2 fused to RPA is sufficient to suppress cellular defects found in Brca2-mutant mammalian cells, these results provide insight into the recently discovered diversity of BRCA2 domain structures in different organisms.


Assuntos
Proteína BRCA2/deficiência , Proteína BRCA2/metabolismo , Reparo do DNA , Proteínas Recombinantes de Fusão/metabolismo , Animais , Proteína BRCA2/química , Aberrações Cromossômicas , Cricetinae , Dano ao DNA/genética , DNA de Cadeia Simples/metabolismo , Expressão Gênica , Humanos , Camundongos , Fenótipo , Ligação Proteica , Rad51 Recombinase/metabolismo , Recombinação Genética , Proteína de Replicação A/metabolismo
7.
Plant Physiol ; 140(3): 1059-69, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16415210

RESUMO

The Arabidopsis (Arabidopsis thaliana) orthologs of Brca2, a protein whose mutations are involved in breast cancer in humans, were previously shown to be essential at meiosis. In an attempt to better understand the Brca2-interacting properties, we examined four partners of the two isoforms of Brca2 identified in Arabidopsis (AtRad51, AtDmc1, and two AtDss1 isoforms). The two Brca2 and the two Dss1 isoforms are named AtBrca2(IV), AtBrca2(V), AtDss1(I), and AtDss1(V) after their chromosomal localization. We first show that both AtBrca2 proteins can interact with either AtRad51 or AtDmc1 in vitro, and that the N-terminal region of AtBrca2 is responsible for these interactions. More specifically, the BRC motifs (so called because iterated in the Brca2 protein) in Brca2 are involved in these interactions: BRC motif number 2 (BRC2) alone can interact with AtDmc1, whereas BRC motif number 4 (BRC4) recognizes AtRad51. The human Rad51 and Dmc1 proteins themselves can interact with either the complete (HsRad51) or a shorter version of AtBrca2 (HsRad51 or HsDmc1) that comprises all four BRC motifs. We also identified two Arabidopsis isoforms of Dss1, another known partner of Brca2 in other organisms. Although all four Brca2 and Dss1 proteins are much conserved, AtBrca2(IV) interacts with only one of these AtDss1 proteins, whereas AtBrca2(V) interacts with both of them. Finally, we show for the first time that an AtBrca2 protein could bind two different partners at the same time: AtRad51 and AtDss1(I), or AtDmc1 and AtDss1(I).


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteína BRCA2/química , Proteína BRCA2/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Genoma de Planta , Humanos , Imunoprecipitação/métodos , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Rad51 Recombinase/química , Rad51 Recombinase/genética , Recombinases Rec A , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
8.
EMBO J ; 23(6): 1392-401, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15014444

RESUMO

Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis , Proteína BRCA2/química , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Duplicação Gênica , Genes Duplicados/genética , Genoma de Planta , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Rad51 Recombinase , Recombinases Rec A , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA