Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36712120

RESUMO

Experiential decision-making can be explained as a result of either memory-based or reinforcement-based processes. Here, for the first time, we show that individual preferences between a memory-based and a reinforcement-based strategy, even when the two are functionally equivalent in terms of expected payoff, are adaptively shaped by individual differences in resting-state brain connectivity between the corresponding brain regions. Using computational cognitive models to identify which mechanism was most likely used by each participant, we found that individuals with comparatively stronger connectivity between memory regions prefer a memory-based strategy, while individuals with comparatively stronger connectivity between sensorimotor and habit-formation regions preferentially rely on a reinforcement-based strategy. These results suggest that human decision-making is adaptive and sensitive to the neural costs associated with different strategies.

2.
Top Cogn Sci ; 14(4): 845-859, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36129911

RESUMO

Cognitive architectures (i.e., theorized blueprints on the structure of the mind) can be used to make predictions about the effect of multiregion brain activity on the systems level. Recent work has connected one high-level cognitive architecture, known as the "Common Model of Cognition," to task-based functional MRI data with great success. That approach, however, was limited in that it was intrinsically top-down, and could thus only be compared with alternate architectures that the experimenter could contrive. In this paper, we propose a bottom-up method to infer a cognitive architecture directly from brain imaging data itself, overcoming this limitation. Specifically, Granger causality modeling was applied to the same task-based fMRI data to infer a network of causal connections between brain regions based on their functional connectivity. The resulting network shares many connections with those proposed by the Common Model of Cognition but also suggests important additions likely related to the role of episodic memory. This combined top-down and bottom-up modeling approach can be used to help formalize the computational instantiation of cognitive architectures and further refine a comprehensive theory of cognition.


Assuntos
Encéfalo , Neuroimagem , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cognição , Causalidade , Rede Nervosa
3.
Front Neurosci ; 16: 832503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898414

RESUMO

The Common Model of Cognition (CMC) has been proposed as a high level framework through which functional neuroimaging data can be predicted and interpreted. Previous work has found the CMC is capable of predicting brain activity across a variety of tasks, but it has not been tested on resting state data. This paper adapts a previously used method for comparing theoretical models of brain structure, Dynamic Causal Modeling, for the task-free environment of resting state, and compares the CMC against six alternate architectural frameworks while also separately modeling spontaneous low-frequency oscillations. For a large sample of subjects from the Human Connectome Project, the CMC provides the best account of resting state brain activity, suggesting the presence of a general purpose structure of connections in the brain that drives activity when at rest and when performing directed task behavior. At the same time, spontaneous brain activity was found to be present and significant across all frequencies and in all regions. Together, these results suggest that, at rest, spontaneous low-frequency oscillations interact with the general cognitive architecture for task-based activity. The possible functional implications of these findings are discussed.

4.
Top Cogn Sci ; 13(3): 499-514, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34174028

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric disorder often characterized by the unwanted re-experiencing of a traumatic event through nightmares, flashbacks, and/or intrusive memories. This paper presents a neurocomputational model using the ACT-R cognitive architecture that simulates intrusive memory retrieval following a potentially traumatic event (PTE) and predicts hippocampal volume changes observed in PTSD. Memory intrusions were captured in the ACT-R rational analysis framework by weighting the posterior probability of re-encoding traumatic events into memory with an emotional intensity term I to capture the degree to which an event was perceived as dangerous or traumatic. It is hypothesized that (1) increasing the intensity I of a PTE will increase the odds of memory intrusions, and (2) increased frequency of intrusions will result in a concurrent decrease in hippocampal size. A series of simulations were run and it was found that I had a significant effect on the probability of experiencing traumatic memory intrusions following a PTE. The model also found that I was a significant predictor of hippocampal volume reduction, where the mean and range of simulated volume loss match results of existing meta-analyses. The authors believe that this is the first model to both describe traumatic memory retrieval and provide a mechanistic account of changes in hippocampal volume, capturing one plausible link between PTSD and hippocampal volume.


Assuntos
Medo , Transtornos de Estresse Pós-Traumáticos , Hipocampo , Humanos , Memória
5.
Neuroimage ; 235: 118035, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838264

RESUMO

The Common Model of Cognition (CMC) is a recently proposed, consensus architecture intended to capture decades of progress in cognitive science on modeling human and human-like intelligence. Because of the broad agreement around it and preliminary mappings of its components to specific brain areas, we hypothesized that the CMC could be a candidate model of the large-scale functional architecture of the human brain. To test this hypothesis, we analyzed functional MRI data from 200 participants and seven different tasks that cover a broad range of cognitive domains. The CMC components were identified with functionally homologous brain regions through canonical fMRI analysis, and their communication pathways were translated into predicted patterns of effective connectivity between regions. The resulting dynamic linear model was implemented and fitted using Dynamic Causal Modeling, and compared against six alternative brain architectures that had been previously proposed in the field of neuroscience (three hierarchical architectures and three hub-and-spoke architectures) using a Bayesian approach. The results show that, in all cases, the CMC vastly outperforms all other architectures, both within each domain and across all tasks. These findings suggest that a common set of architectural principles that could be used for artificial intelligence also underpins human brain function across multiple cognitive domains.


Assuntos
Inteligência Artificial , Encéfalo/fisiologia , Cognição/fisiologia , Conectoma , Inteligência/fisiologia , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia
6.
Top Cogn Sci ; 9(2): 374-394, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27797151

RESUMO

Tetris provides a difficult, dynamic task environment within which some people are novices and others, after years of work and practice, become extreme experts. Here we study two core skills; namely, (a) choosing the goal or objective function that will maximize performance and (b)a feature-based analysis of the current game board to determine where to place the currently falling zoid (i.e., Tetris piece) so as to maximize the goal. In Study 1, we build cross-entropy reinforcement learning (CERL) models (Szita & Lorincz, 2006) to determine whether different goals result in different feature weights. Two of these optimization strategies quickly rise to performance plateaus, whereas two others continue toward higher but more jagged (i.e., variable) heights. In Study 2, we compare the zoid placement decisions made by our best CERL models with those made by 67 human players. Across 370,131 human game episodes, two CERL models picked the same zoid placements as our lowest scoring human for 43% of the placements and as our three best scoring experts for 65% of the placements. Our findings suggest that people focus on maximizing points, not number of lines cleared or number of levels reached. They also show that goal choice influences the choice of zoid placements for CERLs and suggest that the same is true of humans. Tetris has a repetitive task structure that makes Tetris more tractable and more like a traditional experimental psychology paradigm than many more complex games or tasks. Hence, although complex, Tetris is not overwhelmingly complex and presents a right-sized challenge to cognitive theories, especially those of integrated cognitive systems.


Assuntos
Tomada de Decisões , Reforço Psicológico , Humanos , Aprendizagem , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...