Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 39(4): 328-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38030538

RESUMO

Ecological and evolutionary studies are currently failing to achieve complete and consistent reporting of model-related uncertainty. We identify three key barriers - a focus on parameter-related uncertainty, obscure uncertainty metrics, and limited recognition of uncertainty propagation - which have led to gaps in uncertainty consideration. However, these gaps can be closed. We propose that uncertainty reporting in ecology and evolution can be improved through wider application of existing statistical solutions and by adopting good practice from other scientific fields. Our recommendations include greater consideration of input data and model structure uncertainties, field-specific uncertainty standards for methods and reporting, and increased uncertainty propagation through the use of hierarchical models.


Assuntos
Ecologia , Incerteza , Ecologia/métodos
2.
iScience ; 25(12): 105512, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465136

RESUMO

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the "sources of uncertainty" framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

3.
Sci Data ; 9(1): 117, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351917

RESUMO

Besides being central for understanding both global biodiversity patterns and associated anthropogenic impacts, species range maps are currently only available for a small subset of global biodiversity. Here, we provide a set of assembled spatial data for terrestrial vascular plants listed at the global IUCN red list. The dataset consists of pre-defined native regions for 47,675 species, density of available native occurrence records for 30,906 species, and standardized, large-scale Maxent predictions for 27,208 species, highlighting environmentally suitable areas within species' native regions. The data was generated in an automated approach consisting of data scraping and filtering, variable selection, model calibration and model selection. Generated Maxent predictions were validated by comparing a subset to available expert-drawn range maps from IUCN (n = 4,257), as well as by qualitatively inspecting predictions for randomly selected species. We expect this data to serve as a substitute whenever expert-drawn species range maps are not available for conducting large-scale analyses on biodiversity patterns and associated anthropogenic impacts.


Assuntos
Traqueófitas , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...