Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 113(8): 1465-1473, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080548

RESUMO

The pathogen Xylella fastidiosa subsp. fastidiosa has circulated through California's vineyards since its introduction from Central America in the 1800s. This pathogen is responsible for a bacterial disease called Pierce's disease (PD) of grapevine. With no known cure, PD has had devastating effects on some vineyards. Important factors that impact disease severity and persistence include: the presence of insect vectors, grapevine cultivar, management, ecology, and winter temperatures. Removal of infected vines is critical for reducing pathogen spread but relies on accurate and rapid pathogen detection. In this study, we foster a greater understanding of disease symptom emergence by way of a 3-year field inoculation project in Napa Valley. Although PD emergence and symptom progression have been studied in greenhouse and experimental plots, there is a large knowledge gap in quantifying disease progression under commercial conditions. After inoculating 80 mature Vitis vinifera vines in April 2017, we measured bacterial populations and six symptom types at four locations within each plant throughout the subsequent three growing seasons. The main foci of the project were understanding X. fastidiosa movement through the plants, infection, overwinter curing, and symptom development. We observed greater winter recovery than expected, and shriveled grape clusters proved to be a more reliable early indication of infection than other more commonly used symptoms. Although there were differences among wine grape cultivars, this work suggests that disease progression in the field may not fit the paradigm of predominant leaf scorch and low recovery rates as neatly as has been previously believed.

2.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904938

RESUMO

The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930-2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.


Assuntos
Olea/microbiologia , Sequenciamento Completo do Genoma/métodos , Xylella/classificação , Adaptação Fisiológica , América Central , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Filogenia , Filogeografia , Doenças das Plantas/microbiologia , Xylella/genética , Xylella/isolamento & purificação
3.
PLoS One ; 15(8): e0237545, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764829

RESUMO

Pierce's disease is of major concern for grapevine (Vitis vinifera) production wherever the bacterial pathogen Xylella fastidiosa and its vectors are present. Long-term management includes the deployment of resistant grapevines such as those containing the PdR1 locus from the wild grapevine species Vitis arizonica, which do not develop Pierce's disease symptoms upon infection. However, little is understood about how the PdR1 locus functions to prevent disease symptom development. Therefore, we assessed the concentrations of plant defense-associated compounds called phenolics in healthy and X. fastidiosa-infected PdR1-resistant and susceptible grapevine siblings over time. Soluble foliar phenolic levels, especially flavonoids, in X. fastidiosa-infected PdR1-resistant grapevines were discovered to be significantly lower than those in infected susceptible grapevines. Therefore, it was hypothesized that PdR1-resistant grapevines, by possessing lowered flavonoid levels, affects biofilm formation and causes reduced X. fastidiosa intra-plant colonization, thus limiting the ability to increase pathogen populations and cause Pierce's disease. These results therefore reveal that differences in plant metabolite levels might be a component of the mechanisms that PdR1 utilizes to prevent Pierce's disease.


Assuntos
Infecções/tratamento farmacológico , Fenóis/farmacologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Vitis/efeitos dos fármacos , Xylella/efeitos dos fármacos , Xylella/patogenicidade , Progressão da Doença , Suscetibilidade a Doenças , Infecções/metabolismo , Infecções/microbiologia , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Vitis/crescimento & desenvolvimento , Xylella/metabolismo
4.
Insects ; 11(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722654

RESUMO

Xylella fastidiosa is a vector-borne bacterium that causes diseases in many plants of economic interest. The bacterium-vector initial interactions involve bacterial membrane-bound adhesins that mediate cell attachment to the foregut of insect vectors. We investigated the role of the afimbrial adhesin XadA2 in the binding and biofilm formation of X. fastidiosa subsp. pauca to vector surfaces in vitro, as well as its potential to disrupt pathogen transmission. We showed that XadA2 has binding affinity for polysaccharides on sharpshooter hindwings, used as a proxy for the interactions between X. fastidiosa and vectors. When in a medium without carbon sources, the bacterium used wing components, likely chitin, as a source of nutrients and formed a biofilm on the wing surface. There was a significant reduction in X. fastidiosa biofilm formation and cell aggregation on vector wings in competition assays with XadA2 or its specific antibody (anti-XadA2). Finally, pathogen acquisition and transmission to plant were significantly reduced when the vectors acquired X. fastidiosa from an artificial diet supplemented with anti-XadA2. These results show that XadA2 is important in mediating bacterial colonization in the insect and that it could be used as a target for blocking X. fastidiosa transmission.

5.
Environ Microbiol ; 22(7): 2625-2638, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32114707

RESUMO

Xylella fastidiosa subsp. fastidiosa causes Pierce's disease of grapevine (PD) and has been present in California for over a century. A singly introduced genotype spread across the state causing large outbreaks and damaging the grapevine industry. This study presents 122 X. fastidiosa subsp. fastidiosa genomes from symptomatic grapevines, and explores pathogen genetic diversity associated with PD in California. A total of 5218 single-nucleotide polymorphisms (SNPs) were found in the dataset. Strong population genetic structure was found; isolates split into five genetic clusters divided into two lineages. The core/soft-core genome constituted 41.2% of the total genome, emphasizing the high genetic variability of X. fastidiosa genomes. An ecological niche model was performed to estimate the environmental niche of the pathogen within California and to identify key climatic factors involved in dispersal. A landscape genomic approach was undertaken aiming to link local adaptation to climatic factors. A total of 18 non-synonymous polymorphisms found to be under selective pressures were correlated with at least one environmental variable highlighting the role of temperature, precipitation and elevation on X. fastidiosa adaptation to grapevines in California. Finally, the contribution to virulence of three of the genes under positive selective pressure and of one recombinant gene was studied by reverse genetics.


Assuntos
Genoma Bacteriano/genética , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/genética , Xylella/patogenicidade , California , Genótipo , Família Multigênica/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética , Virulência/genética
6.
Mol Plant Microbe Interact ; 33(3): 402-411, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31972098

RESUMO

Although bacterial host colonization is a dynamic process that requires population growth, studies often focus on comparing bacterial populations at a given time point. However, this may not reflect the dynamics of the colonization process. Time-course assays provide important insights into the dynamics of host colonization but are laborious and may still lack resolution for immediate processes affecting populations. An alternative way to address this issue, using widely accessible tools (such as quantitative PCR [qPCR]), is to take advantage of the relationship between bacterial chromosomal replication and cell division to determine population growth status at the sampling time. Conceptually, the ratio between the number of copies at the origin of replication and that at the terminus of replication should be correlated with the measured bacterial growth rate. This peak-to-trough ratio (PTR) to estimate instantaneous population growth status was tested with the slow-growing plant-pathogenic bacterium Xylella fastidiosa. We found no correlation between PTR and the measured growth rate when using genome-level data but overall sequencing depth of coverage trends matched theoretical expectations. On the other hand, the population growth status of X. fastidiosa was predicted by PTR when using qPCR data, which was improved by the pretreatment of cells with a photoreactive DNA-binding dye. Our results suggest that PTR could be used to determine X. fastidiosa growth status both in planta and in insect vectors. We expect PTR will perform better with fast-growing bacterial pathogens, potentially becoming a powerful tool for easily and quickly assessing population growth status.


Assuntos
Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/crescimento & desenvolvimento , Animais , Meios de Cultura/química , Insetos Vetores/microbiologia
7.
PLoS One ; 14(8): e0221119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442247

RESUMO

Xylella fastidiosa is a plant pathogenic bacterium with devastating consequences to several crops of economic importance across the world. While this pathogen has been studied for over a century in the United States, several aspects of its biology remain to be investigated. Determining the physiological state of bacteria is essential to understand the effects of its interactions with different biotic and abiotic factors on cell viability. Although X. fastidiosa is culturable, its slow growing nature makes this technique cumbersome to assess the physiological state of cells present in a given environment. PMA-qPCR, i.e. the use of quantitative PCR combined with the pre-treatment of cells with the dye propidium monoazide, has been successfully used in a number of studies on human pathogens to calculate the proportion of viable cells, but has less frequently been tested on plant pathogens. We found that the use of a version of PMA, PMAxx, facilitated distinguishing between viable and non-viable cells based on cell membrane integrity in vitro and in planta. Additional experiments comparing the number of culturable, viable, and total cells in planta would help further confirm our initial results. Enhancers, intended to improve the efficacy of PMAxx, were not effective and appeared to be slightly toxic to X. fastidiosa.


Assuntos
Membrana Celular/genética , Nicotiana/genética , Nicotiana/microbiologia , Xylella/isolamento & purificação , Azidas/farmacologia , Membrana Celular/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Humanos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Propídio/análogos & derivados , Propídio/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Xylella/genética , Xylella/patogenicidade
8.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028021

RESUMO

Xylella fastidiosa is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: X. fastidiosa subsp. fastidiosa, multiplex, and pauca The origin of recombinogenic X. fastidiosa subsp. morus and sandyi was also assessed. The evolutionary rate of the 622 genes of the species core genome was estimated at the scale of an X. fastidiosa subsp. pauca subclade (7.62 × 10-7 substitutions per site per year), which was subsequently used to estimate divergence time for the subspecies and introduction events. The study characterized genes present in the accessory genome of each of the three subspecies and investigated the core genome to detect genes potentially under positive selection. Recombination is recognized to be the major driver of diversity in X. fastidiosa, potentially facilitating shifts to novel plant hosts. The relative effect of recombination in comparison to point mutation was calculated (r/m = 2.259). Evidence of recombination was uncovered in the core genome alignment; X. fastidiosa subsp. fastidiosa in the United States was less prone to recombination, with an average of 3.22 of the 622 core genes identified as recombining regions, whereas a specific clade of X. fastidiosa subsp. multiplex was found to have on average 9.60 recombining genes, 93.2% of which originated from X. fastidiosa subsp. fastidiosa Interestingly, for X. fastidiosa subsp. morus, which was initially thought to be the outcome of genome-wide recombination between X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex, intersubspecies homologous recombination levels reached 15.30% in the core genome. Finally, there is evidence of X. fastidiosa subsp. pauca strains from citrus containing genetic elements acquired from strains infecting coffee plants as well as genetic elements from both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex In summary, our data provide new insights into the evolution and epidemiology of this plant pathogen.IMPORTANCEXylella fastidiosa is an important vector-borne plant pathogen. We used a set of 72 genomes that constitutes the largest assembled data set for this bacterial species so far to investigate genetic relationships and the impact of recombination on phylogenetic clades and to compare genome content at the subspecies level, and we used a molecular dating approach to infer the evolutionary rate of X. fastidiosa The results demonstrate that recombination is important in shaping the genomes of X. fastidiosa and that each of the main subspecies is under different selective pressures. We hope insights from this study will improve our understanding of X. fastidiosa evolution and biology.


Assuntos
Variação Genética , Genoma Bacteriano , Recombinação Homóloga , Xylella/genética , Filogenia
9.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30857590

RESUMO

A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. Multipartite viruses have a segmented genome where each segment is encapsidated separately. In this situation the viral genome is not recapitulated in a single virus particle but in the viral population. How multipartite viruses manage to efficiently infect individual cells with all segments, thus with the whole genome information, is a long-standing but perhaps deceptive mystery. By localizing and quantifying the genome segments of a nanovirus in host plant tissues we show that they rarely co-occur within individual cells. We further demonstrate that distinct segments accumulate independently in different cells and that the viral system is functional through complementation across cells. Our observation deviates from the classical conceptual framework in virology and opens an alternative possibility (at least for nanoviruses) where the infection can operate at a level above the individual cell level, defining a viral multicellular way of life.


Assuntos
DNA Viral/genética , Genoma Viral , Nanovirus/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Vírion/genética , Vírus de DNA , Hibridização in Situ Fluorescente , Microscopia Confocal , Nanovirus/fisiologia , Análise de Regressão , Replicação Viral
10.
Bio Protoc ; 9(23): e3443, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654938

RESUMO

A founding paradigm in virology is that the spatial unit of the viral replication cycle is an individual cell. This concept applied to multipartite viruses-which have a genome composed of two or more nucleic acid segments, each individually encapsulated-implies that all segments constituting a viral genome need to coinfect the same host cell for replication to occur. Would this requirement be verified, it would constitute a major cost for extreme cases of multipartition such as the Faba bean necrotic stunt virus (FBNSV, nanovirus) whose genome is composed of eight complementary segments, each encoding a single gene ( Grigoras et al., 2009 ). To address this question, we followed the distribution of the FBNSV genome segments by fluorescence in situ hybridization combined to immunolocalization of the replication-controlling viral protein within the cells of the host plant: Vicia Faba. A rapid and efficient protocol to localize viral transcripts in plant and insect hosts has been developed earlier ( Ghanim et al., 2009 ). We here improve this method by using random-primed labeled probes and apply it to the detection and quantification of the individual segments composing the FBNSV genome. Moreover, we combine this technique with immunolocalization so that both viral segments and proteins can be visualized within the same samples.

11.
Annu Rev Phytopathol ; 56: 181-202, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-29889627

RESUMO

The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.


Assuntos
Insetos Vetores/microbiologia , Olea/microbiologia , Doenças das Plantas/microbiologia , Xylella/fisiologia , Animais , Interações Hospedeiro-Patógeno , Insetos Vetores/fisiologia
12.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720515

RESUMO

Multipartite viruses package their genomic segments independently and thus incur the risk of being unable to transmit their entire genome during host-to-host transmission if they undergo severe bottlenecks. In this paper, we estimated the bottleneck size during one infection cycle of Faba bean necrotic stunt virus (FBNSV), an octopartite nanovirus whose segments have been previously shown to converge to particular and unequal relative frequencies within host plants and aphid vectors. Two methods were used to derive this estimate, one based on the probability of transmission of the virus and the other based on the temporal evolution of the relative frequency of markers for two genomic segments, one frequent and one rare (segment N and S, respectively), both in plants and vectors. Our results show that FBNSV undergoes severe bottlenecks during aphid transmission. Further, even though the bottlenecks are always narrow under our experimental conditions, they slightly widen with the number of transmitting aphids. In particular, when several aphids are used for transmission, the bottleneck size of the segments is also affected by within-plant processes and, importantly, significantly differs across segments. These results indicate that genetic drift not only must be an important process affecting the evolution of these viruses but also that these effects vary across genomic segments and, thus, across viral genes, a rather unique and intriguing situation. We further discuss the potential consequences of our findings for the transmission of multipartite viruses.IMPORTANCE Multipartite viruses package their genomic segments in independent capsids. The most obvious cost of such genomic structure is the risk of losing at least one segment during host-to-host transmission. A theoretical study has shown that for nanoviruses, composed of 6 to 8 segments, hundreds of copies of each segment need to be transmitted to ensure that at least one copy of each segment was present in the host. These estimations seem to be very high compared to the size of the bottlenecks measured with other viruses. Here, we estimated the bottleneck size during one infection cycle of FBNSV, an octopartite nanovirus. We show that these bottlenecks are always narrow (few viral particles) and slightly widen with the number of transmitting aphids. These results contrast with theoretical predictions and illustrate the fact that a new conceptual framework is probably needed to understand the transmission of highly multipartite viruses.


Assuntos
Afídeos/virologia , Insetos Vetores , Nanovirus/patogenicidade , Doenças das Plantas/virologia , Vicia faba/virologia , Animais , DNA Viral/genética , Nanovirus/genética
13.
Arch Virol ; 162(3): 799-809, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888410

RESUMO

The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CY) and an efficient vector of flavescence dorée phytoplasma (FD) under laboratory conditions. During a transcriptome sequencing (RNA-seq) project aimed at investigating the interactions between the insect and the two phytoplasmas, a 10,616-nucleotide-long contig with high sequence similarity to known picorna-like viruses was identified among the assembled insect transcripts. The discovery came totally unexpected, because insects from the laboratory colony did not show any evident symptom that could be related to the presence of a virus. The amino acid sequence, the shape and size of viral particles, and the results of phylogenetic analysis suggest that this virus, named Euscelidius variegatus virus 1 (EVV-1), can be considered a new member of a new species in the genus Iflavirus. EVV-1 was detected in all of the tested insects from the laboratory colony used for RNA-seq, both in phytoplasma-exposed and in non-exposed insects, but the viral load measured in FD-exposed samples was significantly lower than that in non-exposed insects. This result suggests the possible existence of an intriguing cross-talk among insects, endogenous bacteria, and viruses. The identification of two other E. variegatus laboratory colonies that were free of EVV-1 could represent the key to addressing some basic virological issues, e.g., viral replication and transmission mechanisms, and offer the opportunity to use infectious clones to express heterologous genes in the leafhopper and manipulate the expression of endogenous genes by promoting virus-induced gene silencing.


Assuntos
Chrysanthemum/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Phytoplasma/fisiologia , Picornaviridae/genética , Doenças das Plantas/virologia , Animais , Sequência de Bases , Chrysanthemum/microbiologia , Genoma Viral , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Dados de Sequência Molecular , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Prevalência
14.
PLoS Pathog ; 12(11): e1005819, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812219

RESUMO

Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available "system" studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.


Assuntos
Vírion , Evolução Biológica , Vírion/genética
15.
J Virol ; 89(19): 9719-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178991

RESUMO

UNLABELLED: Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE: A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission.


Assuntos
Afídeos/virologia , Insetos Vetores/virologia , Modelos Biológicos , Nanovirus/genética , Doenças das Plantas/virologia , Vicia faba/virologia , Viroses/transmissão , Animais , Primers do DNA/genética , Nanovirus/fisiologia , Reação em Cadeia da Polimerase
16.
Nat Commun ; 4: 2248, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23912259

RESUMO

Multipartite viruses have a genome divided into several nucleic acid segments, each encapsidated separately. An evident cost for these viral systems, particularly if some segments are rare, is the difficulty of gathering one copy of each segment to ensure infection. Here, we investigate the segment frequency-related cost by monitoring the copy number of the eight single-gene segments composing the genome of a plant nanovirus. We show that some viral genes accumulate at low frequency, whereas others dominate. We further show that the relative frequency of viral genes impacts both viral accumulation and symptom expression, and changes specifically in different hosts. Earlier proposed benefits of viral genome segmentation do not depend on the segments' frequency and cannot explain our observations. We propose that the differential control of gene/segment copy number may represent an unforeseen benefit for multipartite viruses, which may compensate for the extra costs induced by the low-frequency segments.


Assuntos
Dosagem de Genes , Genes Virais/genética , Vírus de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Desenvolvimento Vegetal , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vicia faba/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...