Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 71(3): e13022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402533

RESUMO

Planktonic foraminifera were long considered obligate sexual outbreeders but recent observations have shown that nonspinose species can reproduce by multiple fission. The frequency of multiple fission appears low but the survival rate of the offspring is high and specimens approaching fission can be distinguished. We made use of this observation and established a culturing protocol aimed at enhancing the detection and frequency of fission. Using this protocol, we selectively cultured specimens of Neogloboquadrina pachyderma and raised the frequency of reproduction by fission in culture from 3% in randomly selected specimens to almost 60%. By feeding the resulting offspring different strains of live diatoms, we obtained a thriving offspring population and during the subsequent 6 months of culturing, we observed two more successive generations produced by fission. This provides evidence that in nonspinose species of planktonic foraminifera, reproduction by multiple fission is likely clonal and corresponds to the schizont phase known from benthic foraminifera. We subsequently tested if a similar culturing strategy could be applied to Globigerinita glutinata, representing a different clade of planktonic foraminifera, and we were indeed able to obtain offspring via multiple fission in this species. This work opens new avenues for laboratory-based experimental work with planktonic foraminifera.


Assuntos
Foraminíferos , Reprodução , Foraminíferos/fisiologia , Plâncton , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia
2.
Biol Rev Camb Philos Soc ; 99(4): 1218-1241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38351434

RESUMO

The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.


Assuntos
Foraminíferos , Variação Genética , Plâncton , Foraminíferos/genética , Foraminíferos/classificação , Plâncton/genética , Plâncton/classificação , Especiação Genética , Código de Barras de DNA Taxonômico
3.
Sci Data ; 10(1): 679, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798341

RESUMO

Calcite shells of planktic foraminifera (Protista, Rhizaria) constitute a large portion of deep-sea sediments. The shells are constructed by sequential addition of partly overlapping chambers with diverse shapes, resulting in complex shell architectures, which are genetically fixed and diagnostic at the species level. The characterisation of the complete architecture requires three-dimensional imaging of the shell, including the partially or entirely covered juvenile chambers. Here we provide reconstructed x-ray micro computed tomography image stacks of 179 specimens of extant planktic foraminifera collected from plankton tows, sediment traps and surface sediments. The specimens have fully resolved and curated taxonomy and represent 43 of the currently recognised 48 holoplanktic species and subspecies. The image stacks form a basis for further applications, such as the characterisation of the architectural morphospace of the extant taxa, allowing studies of species functional ecology, calcification intensity and reconstructions of phylogenetic relationships.


Assuntos
Foraminíferos , Microtomografia por Raio-X , Ecologia , Filogenia
4.
J R Soc Interface ; 19(187): 20210860, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167772

RESUMO

Understanding the biology of reproduction of an organismal lineage is important for retracing key evolutionary processes, yet gaining detailed insights often poses major challenges. Planktonic Foraminifera are globally distributed marine microbial eukaryotes and important contributors to the global carbon cycle. They cannot routinely be cultured under laboratory conditions across generations, and thus details of their life cycle remain incomplete. The production of flagellated gametes has long been taken as an indication of exclusively sexual reproduction, but recent research suggests the existence of an additional asexual generation in the life cycle. To gain a better understanding of the reproductive biology of planktonic Foraminifera, we applied a dynamic, individual-based modelling approach with parameters based on laboratory and field observations to test if sexual reproduction is sufficient for maintaining viable populations. We show that temporal synchronization and potentially spatial concentration of gamete release seems inevitable for maintenance of the population under sexual reproduction. We hypothesize that sexual reproduction is likely beneficial during the adaptation to new environments, while population sustenance in stable environments can be ensured through asexual reproduction.


Assuntos
Eucariotos , Plâncton , Evolução Biológica , Oceanos e Mares , Reprodução , Reprodução Assexuada
5.
ISME Commun ; 1(1): 63, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36750661

RESUMO

Metabarcoding has become the workhorse of community ecology. Sequencing a taxonomically informative DNA fragment from environmental samples gives fast access to community composition across taxonomic groups, but it relies on the assumption that the number of sequences for each taxon correlates with its abundance in the sampled community. However, gene copy number varies among and within taxa, and the extent of this variability must therefore be considered when interpreting community composition data derived from environmental sequencing. Here we measured with single-cell qPCR the SSU rDNA gene copy number of 139 specimens of five species of planktonic foraminifera. We found that the average gene copy number varied between of ~4000 to ~50,000 gene copies between species, and individuals of the same species can carry between ~300 to more than 350,000 gene copies. This variability cannot be explained by differences in cell size and considering all plausible sources of bias, we conclude that this variability likely reflects dynamic genomic processes acting during the life cycle. We used the observed variability to model its impact on metabarcoding and found that the application of a correcting factor at species level may correct the derived relative abundances, provided sufficiently large populations have been sampled.

6.
PLoS One ; 14(12): e0225246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805130

RESUMO

The planktonic foraminifera genus Globigerinoides provides a prime example of a species-rich genus in which genetic and morphological divergence are uncorrelated. To shed light on the evolutionary processes that lead to the present-day diversity of Globigerinoides, we investigated the genetic, ecological and morphological divergence of its constituent species. We assembled a global collection of single-cell barcode sequences and show that the genus consists of eight distinct genetic types organized in five extant morphospecies. Based on morphological evidence, we reassign the species Globoturborotalita tenella to Globigerinoides and amend Globigerinoides ruber by formally proposing two new subspecies, G. ruber albus n.subsp. and G. ruber ruber in order to express their subspecies level distinction and to replace the informal G. ruber "white" and G. ruber "pink", respectively. The genetic types within G. ruber and Globigerinoides elongatus show a combination of endemism and coexistence, with little evidence for ecological differentiation. CT-scanning and ontogeny analysis reveal that the diagnostic differences in adult morphologies could be explained by alterations of the ontogenetic trajectories towards final (reproductive) size. This indicates that heterochrony may have caused the observed decoupling between genetic and morphological diversification within the genus. We find little evidence for environmental forcing of either the genetic or the morphological diversification, which allude to biotic interactions such as symbiosis, as the driver of speciation in Globigerinoides.


Assuntos
Foraminíferos/classificação , Foraminíferos/genética , Evolução Biológica , Foraminíferos/citologia , Variação Genética , Filogenia
7.
Sci Data ; 4: 170109, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829434

RESUMO

Census counts of marine microfossils in surface sediments represent an invaluable resource for paleoceanography and for the investigation of macroecological processes. A prerequisite for such applications is the provision of data syntheses for individual microfossil groups. Specific to such syntheses is the necessity of taxonomical harmonisation across the constituent datasets, coupled with dereplication of previous compilations. Both of these aspects require expert knowledge, but with increasing number of records involved in such syntheses, the application of expert knowledge via manual curation is not feasible. Here we present a synthesis of planktonic foraminifera census counts in surface sediment samples, which is taxonomically harmonised, dereplicated and treated for numerical and other inconsistencies. The data treatment is implemented as an objective and largely automated pipeline, allowing us to reduce the initial 6,984 records to 4,205 counts from unique sites and informative technical or true replicates. We provide the final product and document the procedure, which can be easily adopted for other microfossil data syntheses.


Assuntos
Foraminíferos , Plâncton , Animais , Bases de Dados Factuais , Sedimentos Geológicos
8.
Mol Ecol Resour ; 15(6): 1472-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25828689

RESUMO

Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent.


Assuntos
Biodiversidade , Bases de Dados de Ácidos Nucleicos , Ecossistema , Foraminíferos/classificação , Foraminíferos/genética , Filogeografia , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Plâncton/classificação , Plâncton/genética , RNA Ribossômico 18S/genética , Rhizaria , Análise de Sequência de DNA
9.
Ecology ; 88(4): 830-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17536700

RESUMO

Development of a mechanistic understanding and predictions of patterns of biodiversity is a central theme in ecology. One of the most influential theories, the intermediate disturbance hypothesis (IDH), predicts maximum diversity at intermediate levels of disturbance frequency. The dynamic equilibrium model (DEM), an extension of the IDH, predicts that the level of productivity determines at what frequency of disturbance maximum diversity occurs. To test, and contrast, the predictions of these two models, a field experiment on marine hard-substratum assemblages was conducted with seven levels of disturbance frequency and three levels of nutrient availability. Consistent with the IDH, maximum diversity, measured as species richness, was observed at an intermediate frequency of disturbance. Despite documented effects on productivity, the relationship between disturbance and diversity was not altered by the nutrient treatments. Thus, in this system the DEM did not improve the understanding of patterns of diversity compared to the IDH. Furthermore, it is suggested that careful consideration of measurements and practical definitions of productivity in natural assemblages is necessary for a rigorous test of the DEM.


Assuntos
Biodiversidade , Crustáceos/crescimento & desenvolvimento , Eucariotos/crescimento & desenvolvimento , Modelos Biológicos , Poríferos/crescimento & desenvolvimento , Animais , Comportamento Competitivo , Ecossistema , Dinâmica Populacional , Crescimento Demográfico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...